Welcome!

@ThingsExpo Authors: Liz McMillan, Yeshim Deniz, Pat Romanski, Elizabeth White, William Schmarzo

Related Topics: @ThingsExpo, Machine Learning , Artificial Intelligence

@ThingsExpo: Blog Feed Post

What Business Leaders Need to Know About Machine Learning | @ThingsExpo #AI #ML #IoT #M2M

Many of the algorithms that fall into the Machine Learning category are analytic algorithms that have been around for decades

What Tomorrow's Business Leaders Need to Know About Machine Learning

Sometimes I write a blog just to formulate and organize a point of view, and I think it’s time that I pull together the bounty of excellent information about Machine Learning. This is a topic with which business leaders must become comfortable, especially tomorrow’s business leaders (tip for my next semester University of San Francisco business students!). Machine learning is a key capability that will help organizations drive optimization and monetization opportunities, and there have been some recent developments that will place basic machine learning capabilities into the hands of the lines of business.

By the way, there is an absolute wealth of freely-available material on machine learning, so I’ve included a sources section at the end of this blog for folks who want more details on machine learning.

So strap’em on! Time to dive into the world of machine learning!

Machine Learning Basics
Much of what comprises “Machine Learning” is really not all new. Many of the algorithms that fall into the Machine Learning category are analytic algorithms that have been around for decades such as clustering, association rules and decisions trees. However, the detailed, granularity of the data, the wide variety of data sources and massive increase in computing power has re-invigorated many of these mature algorithms. Today, machine learning is being used for a variety of uses including:

  • Text translation, voice recognition and natural language processing (NLP). Machine Learning is the brains behind the continuously improving “conversations” with Apple Siri, Google Assistant, Microsoft Cortana and Amazon Alexa.

Facial, photo and image recognition. For example, the all-important question of “What is a Chihuahua puppy and what is a blueberry muffin?” can be addressed with a well-trained machine learning algorithm (see Figure 1).

Figure 1: Puppy versus blueberry muffin exercise

More applications of machine learning will be coming soon, including:

  • Cyber security
  • Insider trading
  • Money laundering
  • Personalized medicine
  • Personalized marketing
  • Fraud detection
  • Autonomous vehicles

So exactly what is machine learning?  Let’s start with a definition of machine learning:

Machine learning is a type of applied artificial intelligence (AI) that provides computers with the ability to gain knowledge without being explicitly programmed. Machine learning focuses on the development of computer programs that can change when exposed to new data.

Fundamentally, there are only two things that Machine Learning does:

  • Quantify existing relationships (quantify relationships from historical data and apply those relationships to new data sets).
  • Discover latent relationships (draw inferences buried in the data).

Machine Learning accomplishes these two tasks using either supervised or unsupervised learning algorithms. What’s the difference? Supervised learning includes the classification or categorization of the outcomes (e.g., fraudulent transaction, customer attrition, part failure, patient illness, purchase transaction, web click) in the observations. Unsupervised learning does not have the outcomes in the observations.

Supervised Learning
Supervised learning
algorithms make predictions based on a set of examples. For example, historical sales can be used to estimate the future prices. With supervised learning, you have an input variable that consists of labeled training data and a desired output variable. You use an algorithm to analyze the training data to learn the function that maps the input to the output. This inferred function maps new, unknown examples by generalizing from the training data to anticipate results in unseen situations.

  • Classification: when the objective field is categorical. For these problems, a Machine Learning algorithm is used to build a model that predicts a category (label or class) for a new example (instance). That is, it “classifies” new instances into a given set of categories (or discrete values). For example, “true or false”, “fraud or not fraud”, “high risk, low risk or medium risk”, etc. There can be hundreds of different categories.
  • Regression: when the objective field is numeric. For these problems, a Machine Learning algorithm is used to build a model that predicts a continuous value. That is, given the fields that define a new instance the model predicts a real number. For example, “the price of a house”, “the number of units sold for a product”, “the potential revenue of a lead”, “the number of hours until next system failure”, etc.

Both classification and regression problems can be solved using supervised Machine Learning techniques. They are called supervised in the sense that the values of the output variable have either been provided by a human expert (e.g., the patient had been diagnosed with diabetes or not) or by a deterministic automated process (e.g., customers who did not pay their fees in the last three months are labeled as “delinquent”). The objective field values along with the input fields need to be collected for each instance in a structured dataset that is used to train the model. The algorithms learn a predictive model that maps your input data to a predicted objective field value.

Unsupervised Learning
When performing unsupervised learning, the machine is presented with totally unlabeled data. It is asked to discover the intrinsic patterns that underlie the data, such as a clustering structure, a low-dimensional manifold, or a sparse tree and graph.

Clustering: Grouping a set of data examples so that examples in one group (or one cluster) are more similar (according to some criteria) than those in other groups. This is often used to segment the whole dataset into several groups. Analysis can be performed in each group to help users to find intrinsic patterns.

Source: http://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html

  • Association: If-then statements that uncover relationships within the data. An example of an association rule would be “If a customer buys a dozen eggs, he is 80% likely to also purchase milk.”

Source: https://www.slideshare.net/wanaezwani/apriori-and-eclat-algorithm-in-association-rule-mining

  • Neural Networks: Modeled after the human brain, a neural network consists of a large number of processors operating in parallel and arranged in tiers (feedforward). The first tier receives the raw input information and each successive tier receives the output from the preceding tier and performs further analysis. The last tier produces the output of the system. Neural networks are adaptive, which means they modify themselves as they learn from initial training and subsequent runs provide more information about the world.

Source: http://coderoncode.com/machine-learning/2017/03/26/neural-networks-without-a-phd-part2.html

  • Recurrent neural network (RNN) is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network that allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. This makes them applicable to tasks such as unsegmented connected handwriting recognition or speech recognition.

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Figure 2 provides a more detailed inventory of the different types of supervised and unsupervised machine learning algorithms.

Figure 2: Types of Machine Learning Algorithms
Source: http://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/

Putting Machine Learning to Work
In a recent University of San Francisco project that we conducted with a local data science company, I was introduced to a product called BigML (BigML.com).  I was truly blown away by the relative simplicity of the tools (think “Tableau for Machine Learning”). I have no financial interest in BigML and suspect that as soon as this blog gets published, I will hear from other startups that are building something similar. But until I get those calls, I’m going to use BigML to showcase some Machine Learning basics.

BigML is free for the first 16 gigabytes of data and comes with some pre-loaded data sets and an extensive library of documentation, some of which I used for this blog. For this exercise, we’re going to use a data set that comes bundled with the BigML product: Titanic Survivors Data Set (see Figure 3).

Figure 3: Titanic Survivors Data Set

BigML provides a nice feature to allow the data scientist to explore and understand the data sets, and provides some basic statistical information (minimum, median, mean, maximum, standard deviation, kurtosis, skewness) about each of the variables in the data set.

BigML allows you to select from a variety of supervised and unsupervised models. I selected the supervised option (because I knew the classification of the passenger as survived or not survived) and got the decision tree in Figure 4 that predicts the likelihood of a Titanic passenger surviving given a wide variety of different variables (e.g., passenger age, class of travel, fare paid, in what city the passenger boarded).

Figure 4: Titanic Survivors Decision Tree

The resulting Decision Tree provides a series of “If-then” statements; each branch “yields a story” about the chances of survival.

Hint: you want to be young and you want to be rich to improve your odds of surviving the Titanic. That’s something that might be very useful if you ever find yourself on the Titanic.

To learn more about the “Predicting Titanic Survival Outcome” exercise, check out YouTube.

BigML provides a wide variety of machine learning algorithms with which one can play. Plus their documentation on each of the different machine learning algorithms is very impressive. I think these folks would make a fortune if they created an accompanying text book (and I sent them a note telling them such).

Machine Learning Summary
Both Supervised and Unsupervised learning algorithms will find relationships and occurrences in the data that might be relevant. The data scientist and the business stakeholder still must apply common sense to the findings; they must apply domain knowledge to ensure that not only are the uncovered relationships and insights “Strategic, Actionable and Material,” but they simply must apply common sense in order to prevent making statements of fact that just don’t make sense.

No amount of machine learning is going to replace good old common sense.

Appendix: Additional Machine Learning Sources

The post What tomorrow’s business leaders need to know about Machine Learning? appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business”, is responsible for setting the strategy and defining the Big Data service line offerings and capabilities for the EMC Global Services organization. As part of Bill’s CTO charter, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He’s written several white papers, avid blogger and is a frequent speaker on the use of Big Data and advanced analytics to power organization’s key business initiatives. He also teaches the “Big Data MBA” at the University of San Francisco School of Management.

Bill has nearly three decades of experience in data warehousing, BI and analytics. Bill authored EMC’s Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements, and co-authored with Ralph Kimball a series of articles on analytic applications. Bill has served on The Data Warehouse Institute’s faculty as the head of the analytic applications curriculum.

Previously, Bill was the Vice President of Advertiser Analytics at Yahoo and the Vice President of Analytic Applications at Business Objects.

@ThingsExpo Stories
SYS-CON Events announced today that CAST Software will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CAST was founded more than 25 years ago to make the invisible visible. Built around the idea that even the best analytics on the market still leave blind spots for technical teams looking to deliver better software and prevent outages, CAST provides the software intelligence that matter ...
SYS-CON Events announced today that Daiya Industry will exhibit at the Japanese Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ruby Development Inc. builds new services in short period of time and provides a continuous support of those services based on Ruby on Rails. For more information, please visit https://github.com/RubyDevInc.
As businesses evolve, they need technology that is simple to help them succeed today and flexible enough to help them build for tomorrow. Chrome is fit for the workplace of the future — providing a secure, consistent user experience across a range of devices that can be used anywhere. In her session at 21st Cloud Expo, Vidya Nagarajan, a Senior Product Manager at Google, will take a look at various options as to how ChromeOS can be leveraged to interact with people on the devices, and formats th...
SYS-CON Events announced today that Evatronix will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Evatronix SA offers comprehensive solutions in the design and implementation of electronic systems, in CAD / CAM deployment, and also is a designer and manufacturer of advanced 3D scanners for professional applications.
SYS-CON Events announced today that Taica will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Taica manufacturers Alpha-GEL brand silicone components and materials, which maintain outstanding performance over a wide temperature range -40C to +200C. For more information, visit http://www.taica.co.jp/english/.
Organizations do not need a Big Data strategy; they need a business strategy that incorporates Big Data. Most organizations lack a road map for using Big Data to optimize key business processes, deliver a differentiated customer experience, or uncover new business opportunities. They do not understand what’s possible with respect to integrating Big Data into the business model.
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities – ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups. As a result, many firms employ new business models that place enormous impor...
Amazon is pursuing new markets and disrupting industries at an incredible pace. Almost every industry seems to be in its crosshairs. Companies and industries that once thought they were safe are now worried about being “Amazoned.”. The new watch word should be “Be afraid. Be very afraid.” In his session 21st Cloud Expo, Chris Kocher, a co-founder of Grey Heron, will address questions such as: What new areas is Amazon disrupting? How are they doing this? Where are they likely to go? What are th...
SYS-CON Events announced today that MIRAI Inc. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. MIRAI Inc. are IT consultants from the public sector whose mission is to solve social issues by technology and innovation and to create a meaningful future for people.
SYS-CON Events announced today that Dasher Technologies will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Dasher Technologies, Inc. ® is a premier IT solution provider that delivers expert technical resources along with trusted account executives to architect and deliver complete IT solutions and services to help our clients execute their goals, plans and objectives. Since 1999, we'v...
SYS-CON Events announced today that NetApp has been named “Bronze Sponsor” of SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. NetApp is the data authority for hybrid cloud. NetApp provides a full range of hybrid cloud data services that simplify management of applications and data across cloud and on-premises environments to accelerate digital transformation. Together with their partners, NetApp emp...
SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
SYS-CON Events announced today that TidalScale, a leading provider of systems and services, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. TidalScale has been involved in shaping the computing landscape. They've designed, developed and deployed some of the most important and successful systems and services in the history of the computing industry - internet, Ethernet, operating s...
Infoblox delivers Actionable Network Intelligence to enterprise, government, and service provider customers around the world. They are the industry leader in DNS, DHCP, and IP address management, the category known as DDI. We empower thousands of organizations to control and secure their networks from the core-enabling them to increase efficiency and visibility, improve customer service, and meet compliance requirements.
SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant tha...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, will lead you through the exciting evolution of the cloud. He'll look at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering ...
In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
SYS-CON Events announced today that Avere Systems, a leading provider of enterprise storage for the hybrid cloud, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Avere delivers a more modern architectural approach to storage that doesn't require the overprovisioning of storage capacity to achieve performance, overspending on expensive storage media for inactive data or the overbui...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.