Welcome!

@ThingsExpo Authors: Yeshim Deniz, Liz McMillan, Kevin Benedict, Zakia Bouachraoui, Pat Romanski

Related Topics: @ThingsExpo, Machine Learning , Artificial Intelligence

@ThingsExpo: Article

How Is Apple Using Machine Learning? | @ThingsExpo #AI #ML #DL #DX #IoT

Today, machine learning is found in almost every product and service by Apple

Today, machine learning is found in almost every product and service by Apple. They use deep learning to extend battery life between charges on their devices and detect fraud on the Apple store, recognize the locations and faces in your photos, and help Apple choose news stories for you.

The concept of AI (Artificial Intelligence) has been the subject of many discussions lately. According to some predictions, AI will have the ability to learn by itself, outclassing the capabilities of the human brain, and even manage to fight for equal rights by the year 2100. Even though these are (still) just speculations and predictions, companies like Apple are developing and implementing machine learning technology, which is still in its infancy. How is Apple using machine learning?

Apple's beginnings with deep learning technologies
Let's start with Apple's beginnings with using AI. It was during the 1990s, when the company was using certain machine learning techniques in its products with handwriting recognition. This machine learning techniques were, of course, much more primitive.

Today, machine learning is found in almost every product and service by Apple. They use deep learning to extend battery life between charges on their devices and detect fraud on the Apple store, recognize the locations and faces in your photos, and help Apple choose news stories for you. Machine learning determines whether the owners of Apple Watch cloud are really exercising or just perambulating. It figures out whether you'd be better off switching to the cell network due to a weak Wi-Fi signal.

Apple's smart assistant
In 2011, Apple integrated a smart assistant into its operating system, and was the first tech giant to pull it off. The name of that smart assistant is Siri, and it was an adaptation of a standalone app that Apple had purchased (along with the app's developing team). Siri had ‘exploded', with ecstatic initial reviews. However, over the next few years, users wanted to see Apple deal with Siri's shortcomings. Thus, Siri got a ‘brain transplant' in 2014.

Siri's voice recognition was moved to a neural-net based system. The system began leveraging machine learning techniques, including DNN (deep neural networks), long short-term memory units, convolutional neural networks, n-grams, and gate recurrent units. Siri was operational with deep learning, while it still looked the same.

Every iPhone user has come across Apple's AI, for example, when you swipe on your device screen to get a shortlist of all the apps that you're most likely to open next, or when it identifies a caller who's not memorized in your contact list. Whenever a map location pops out for the accommodation you've reserved, or when you get reminded of an appointment that you forgot to put into your calendar. Apple's neural-network trained system watches as you type, detecting items and key events like appointments, contacts, and flight information. The information is not collected by the company, but stays on your iPhone and in cloud-based storage backups - the information is filtered so it can't be inferred. All this is made possible by Apple's adoption of neural nets and deep learning.

During this year's WWDC, Apple presented how machine learning is used by a new Siri-powered watch face to customize its content in real-time, including news, traffic information, reminders, upcoming meetings, etc., when they are supposed to be most relevant.

Making mobile AI faster with new machine learning API
Apple wants to make the AI on your iPhone as powerful and fast as possible. A week ago, the company unveiled a new machine learning API, named Core ML. The most important benefit of Core ML will be faster responsiveness of the AI when executing on the Apple Watch, iPad, and iPhone. What would this cover? Well, everything from face recognition to text analysis, with an effect of a wide range of apps.

The essential machine learning tools that the new Core ML will support include neural networks (deep, convolutional, and recurrent), tree ensembles, and linear models. As for privacy, the data that's used for improving user experience won't leave the users' tablets and phones.

The announcement of making AI work better on mobile devices became an industry-wide trend, meaning that other companies might be trying that as well. As for Apple, it's clear that deep learning technology has changed their products. However, it's not clear whether it's changing the company itself. Apple carefully controls the user experience, with everything being precisely coded and pre-designed. However, engineers must take a step back (when using machine learning) and let the software discover solutions by itself. Will machine learning systems have a hand in product design, if Apple manages to adjust to the modern reality?

More Stories By Nate Vickery

Nate M. Vickery is a business consultant from Sydney, Australia. He has a degree in marketing and almost a decade of experience in company management through latest technology trends. Nate is also the editor-in-chief at bizzmarkblog.com.

IoT & Smart Cities Stories
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
@CloudEXPO and @ExpoDX, two of the most influential technology events in the world, have hosted hundreds of sponsors and exhibitors since our launch 10 years ago. @CloudEXPO and @ExpoDX New York and Silicon Valley provide a full year of face-to-face marketing opportunities for your company. Each sponsorship and exhibit package comes with pre and post-show marketing programs. By sponsoring and exhibiting in New York and Silicon Valley, you reach a full complement of decision makers and buyers in ...
There are many examples of disruption in consumer space – Uber disrupting the cab industry, Airbnb disrupting the hospitality industry and so on; but have you wondered who is disrupting support and operations? AISERA helps make businesses and customers successful by offering consumer-like user experience for support and operations. We have built the world’s first AI-driven IT / HR / Cloud / Customer Support and Operations solution.
LogRocket helps product teams develop better experiences for users by recording videos of user sessions with logs and network data. It identifies UX problems and reveals the root cause of every bug. LogRocket presents impactful errors on a website, and how to reproduce it. With LogRocket, users can replay problems.
Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIs and mobile applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build safer applications that maximize data security and brand protection. The company has detected more than 300 million application eavesdropping incidents and currently secu...
Rafay enables developers to automate the distribution, operations, cross-region scaling and lifecycle management of containerized microservices across public and private clouds, and service provider networks. Rafay's platform is built around foundational elements that together deliver an optimal abstraction layer across disparate infrastructure, making it easy for developers to scale and operate applications across any number of locations or regions. Consumed as a service, Rafay's platform elimi...
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound e...
In today's enterprise, digital transformation represents organizational change even more so than technology change, as customer preferences and behavior drive end-to-end transformation across lines of business as well as IT. To capitalize on the ubiquitous disruption driving this transformation, companies must be able to innovate at an increasingly rapid pace.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Day 2 Keynote at 17th Cloud Expo, Sandy Ca...