Welcome!

@ThingsExpo Authors: Zakia Bouachraoui, Yeshim Deniz, Liz McMillan, Elizabeth White, Pat Romanski

Related Topics: @CloudExpo, Machine Learning , @DXWorldExpo

@CloudExpo: Blog Post

How Data Science Is Transforming Cancer Treatment Scheduling | @CloudExpo #Cloud #BigData

A mathematical approach to improve infusion center wait times

How Data Science Is Transforming Cancer Treatment Scheduling
By Mohan Giridharadas, Founder & CEO, LeanTaaS iQueue

Anyone who has ever had the misfortune of dealing with a cancer diagnosis - either personally or as a caregiver to a friend or loved one - must have at some point wondered why they invariably had to wait well past their treatment appointment time, every time.

The root cause is that the healthcare scheduling system is broken. Healthcare providers are using a calculator, spreadsheets and standard electronic health record (EHR) templates to solve a math problem that demands a cluster of servers and data scientists to solve effectively.

Most EHRs use scheduling templates that have no real scheduling intelligence built in. In their efforts to be patient-centric, they typically subscribe to a first-come, first-served "hair salon" methodology. Even the best among them use gut-based rules of thumb to accommodate patient and staff needs for a particular appointment slot. The result is, in effect, the opposite of a patient-centric situation - a domino effect of longer wait times and unhappy patients and doctors.

Traditional approaches just don't hold water ...
Let's take a 35-chair infusion center that operates eight hours per day treating five types of appointments - 1 hour, 2 hours, 3-5 hours, 6-8 hours, or 9 or more hours. Four sets of patients can start their treatment at 10-minute intervals. That's 256 possible start times or "slots" per day. The number of ways those patients can be accommodated is a number with over 100 zeros behind it. By comparison, if you were to use 1-gallon milk jugs to hold all of the oceans' water, the number of jugs needed would have 40 zeros behind it. The chance of stumbling upon the most effective scheduling arrangement using the same approach as your neighborhood hair salon or oil change shop is, for practical purposes, nonexistent. Here's what the math looks like:

With those odds, it is clear that simple spreadsheets or traditional EHR approaches can never create an optimal solution for scheduling appointments.

Now, compound the scope of possible appointments with the reality of hospital variables, such as practitioner schedules, staff changes, patterns of demand, equipment maintenance, room availability, lab results and clinical trial events, and you can see why this becomes a very difficult formula to solve with simple math - and why you continue to wait, wait and wait some more. Add to that patient preference - most patients want appointments in the 10 a.m. to 2 p.m. range - and you end up with a schedule full of more holes than a block of Swiss cheese.

... But new approaches using data science can help lose the "wait"
Inspired by the likes of Toyota and just-in-time lean manufacturing practices, data science and mathematics are changing the face of healthcare scheduling and, in effect, making healthcare more accessible to more patients.

By taking a holistic review, data scientists are mining all scheduling patterns and possibilities specific to a center, as well as considering operational constraints across patient demand, practitioner and staffing schedules, and capital asset availability. From there, an algorithm is created that optimizes a schedule for the center to serve patients more uniformly throughout the day, versus the peaks and valleys of traditional scheduling systems. The end result promises more patients served, reduced cost of service, optimized equipment and facility utilization, and a whole lot less sitting in the waiting room.

This mathematical approach to infusion center scheduling is already delivering impressive results; providers like Stanford Health Care, UCHealth, NewYork-Presbyterian, Fox Chase Cancer Center, UCSF, the Huntsman Cancer Institute and many others are seeing wait times decreased by as much as 55 percent during peak hours. Put that in real-world terms: A one-hour wait becomes 27 minutes. Who wouldn't want a half-hour of waiting room time back?

As first published in MedCity News.

###

Mohan Giridharadas is an accomplished expert in lean methodologies. During his 18-year career at McKinsey & Company (where he was a senior partner/director for six years), he co-created the lean service operations practice and ran the North American lean manufacturing and service operations practices and the Asia-Pacific operations practice. He has helped numerous Fortune 500 companies drive operational efficiency with lean practices. As the founder and CEO of LeanTaaS (a lean and predictive analytics company), Mohan has worked closely with dozens of leading healthcare institutions including Stanford Health Care, UCHealth, UCSF, Wake Forest and more. Mohan holds a B.Tech from IIT Bombay, MS in Computer Science from Georgia Institute of Technology and an MBA from Stanford GSB. He is on the faculty of Continuing Education at Stanford University and UC Berkeley Haas School of Business and has been named by Becker's Hospital Review as one of the top entrepreneurs innovating in healthcare.

For more information on LeanTaaS iQueue, please visit https://iqueue.com/ and follow the company on Twitter https://twitter.com/LeanTaaS @LeanTaaS, Facebook at https://www.facebook.com/LeanTaaS and LinkedIn at https://www.linkedin.com/company/leantaas

More Stories By LeanTaaS Blog

LeanTaaS is a Silicon Valley software company whose offerings rely on advanced data science to significantly improve the operational performance of hospitals and clinics. Using LeanTaaS iQueue in conjunction with their existing EHR's, healthcare institutions are developing optimized schedules that are tailored to each site and can rapidly reduce patient wait times and operating costs while increasing patient access and satisfaction, care provider satisfaction, and asset utilization.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...