Welcome!

@ThingsExpo Authors: Pat Romanski, Elizabeth White, Yeshim Deniz, Liz McMillan, William Schmarzo

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Big Data Technology - the Rebel without a Cause | @BigDataExpo #BigData #DataLake

We know that IT has been getting pressure to develop capabilities to support big data initiatives

Big Data Technology - the Rebel without a Cause

Gartner cited the #1 challenge in Big Data as “Determining how to get value from Big Data.”

Did I read that right? And by no a small margin! How to get value from Big Data? Shouldn’t it be shocking that such a fundamental question persists while businesses are spending billions on data analytics capabilities and infrastructure? If ever there was a solution looking for a problem (or a rebel without a cause), this is it.  How can the most elusive part of Big Data be “how to get value?” Shouldn’t someone have thought of this “before?”

We all talk about the opportunities to enhance customer experiences, uncover new monetization opportunities, and increase operational efficiencies. But… where’s the beef??? Well, here is my take on it.

The graphic below is over one year old – I know that. But the majority of organizations that I speak with are in this same boat today – how to get value? Well, we know that IT has been getting pressure to develop capabilities to support big data initiatives. So IT is investing in the capabilities they think they need. And there are plenty of vendors that are more than happy to sell them the kitchen sink. In fact, these purchasing decisions are relatively easy—the technology works and there are many choices. Again, see below in the red box (the infrastructure and architecture are not significant challenges for customers).

However, there are many examples of wonderful successes with big data and analytics and we read about those in the news, and we experience them in our everyday lives (Netflix, Uber, AirBnB, Amazon, Tesla, etc. etc.) But for the thousands of businesses you don’t hear about, why are they finding it easier to spot a snow leopard in the wild, than figure out how to get value from big data? Technology is not the problem. Here are a few things to keep in mind that will help you learn how to integrate data and analytics into your business models:

1. Begin with an end in mind. Thank you Stephen Covey. In addition to the chart above, Gartner recently reported that many big data projects are not making it to production – only 15 percent of business they surveyed reported deploying their big data project into production. What we tend to see is that these projects stall out as science experiments because nobody bothered to determine the potential ROI of the initiative, and then priorities change. In our consulting organization, we offer a Big Data Vision Workshop to help customers identify and prioritize the analytics use cases that have the best combination of business benefits and implementation feasibility. It’s wonderful offering and I’m not aware of another like it. But we don’t stop there. To help validate the potential ROI of an analytics use case, we have a Proof of Value service where we use real customer data and show them, in their own IT environment, how to surface the insights and how those insights can be consumed from an end-user standpoint. After all, insights need to be actionable, or there is no value.

2. Big data solutions are not compilations of IT infrastructure. There are many IT infrastructure vendors that are selling infrastructure but calling it a big data “solution.” And I say… wrong. They may be selling a very robust platform with every possible capability, but it’s not a solution until it is solving a problem. It’s a rebel without a cause. Don’t get me wrong, the hardware and software are required, but that’s not the top challenge. Fortunately, I work for a company that understands that the customer is running a business, with business challenges and business opportunities.

3. Think Like a data scientist. Our Dell EMC Services CTO, and accidental mentor of mine, Bill Schmarzo, has helped many of business leaders to learn to think like a data scientist, and it’s not as hard as it sounds. The process is fairly linear: consider a top-level strategic initiative. Consider the business stakeholders. Consider the decisions they are trying to make in support of the initiative. Consider the questions they must answer to make those decisions. Consider the data sets that are relevant to answering those decisions. There is more to it than that, but if you can follow those basics, you can lead your data science team to focus on the data and analytics scenarios that are going to help you achieve your business objectives. Of course you’ll have to examine the implementation feasibility as well, and that’s why the list of stakeholders must include people from the business and IT.

The post Big Data Technology—the Rebel without a Cause appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By Jeffrey Abbott

Jeff is part of Tata Consultancy Services Digital Software and Solutions group, as a lead evangelist for its IoT analytics platform solutions for smart cities, smart retail, smart banking, smart comms, and other areas.

Prior to TCS, Jeff was part of EMC’s Global Services division, helping customers understand how to identify, and take advantage of opportunities in Big Data, IoT, and digital transformation. Jeff helped build and promote a cloud-based ecosystem for CA Technologies that combined an online community, cloud development platform, and e-commerce site for cloud services and spent several years within CA’s Thought Leadership group, developing and promoting content and programs around disruptive trends in IT. Prior to this, Jeff spent 3 years product marketing EMC, as well as a tenure Citrix, and numerous hi-tech marketing firms – one of which he founded with 2 former colleagues in 1999. Jeff lives in Sudbury, MA, with his wife, 2 boys, and dog. Jeff enjoys skiing, backpacking, photography, and classic cars.

IoT & Smart Cities Stories
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science" is responsible for guiding the technology strategy within Hitachi Vantara for IoT and Analytics. Bill brings a balanced business-technology approach that focuses on business outcomes to drive data, analytics and technology decisions that underpin an organization's digital transformation strategy.
DXWorldEXPO LLC, the producer of the world's most influential technology conferences and trade shows has announced the 22nd International CloudEXPO | DXWorldEXPO "Early Bird Registration" is now open. Register for Full Conference "Gold Pass" ▸ Here (Expo Hall ▸ Here)
CloudEXPO New York 2018, colocated with DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and sh...
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
What are the new priorities for the connected business? First: businesses need to think differently about the types of connections they will need to make – these span well beyond the traditional app to app into more modern forms of integration including SaaS integrations, mobile integrations, APIs, device integration and Big Data integration. It’s important these are unified together vs. doing them all piecemeal. Second, these types of connections need to be simple to design, adapt and configure...
Cell networks have the advantage of long-range communications, reaching an estimated 90% of the world. But cell networks such as 2G, 3G and LTE consume lots of power and were designed for connecting people. They are not optimized for low- or battery-powered devices or for IoT applications with infrequently transmitted data. Cell IoT modules that support narrow-band IoT and 4G cell networks will enable cell connectivity, device management, and app enablement for low-power wide-area network IoT. B...
Contextual Analytics of various threat data provides a deeper understanding of a given threat and enables identification of unknown threat vectors. In his session at @ThingsExpo, David Dufour, Head of Security Architecture, IoT, Webroot, Inc., discussed how through the use of Big Data analytics and deep data correlation across different threat types, it is possible to gain a better understanding of where, how and to what level of danger a malicious actor poses to an organization, and to determ...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.