Welcome!

@ThingsExpo Authors: Carmen Gonzalez, Yeshim Deniz, Elizabeth White, Zakia Bouachraoui, William Schmarzo

Related Topics: @CloudExpo, @DXWorldExpo, @ThingsExpo

@CloudExpo: Blog Feed Post

Election #DataScience and the Death of Truth | @CloudExpo #BigData #Analytics

Many candidates treated opinions as ‘truth’ and a large portion of the American public grabbed ahold of these ‘truths’ as gospel

The U.S. Presidential election is finally over. The protests are winding down, they’ve stopped burning cars in Oakland (for now), and the talks of California succession are waning. But I am struggling to return to “normal” because in this election, truth got hammered.

Many candidates treated opinions as “truth” and a large portion of the American public grabbed a hold of these “truths” as gospel. It may have been a good time to be in the “fact checking” business, but I’m not sure how effective even the fact checkers could be given the spontaneous nature of “opinions as facts” being thrown around, not to mention the people who create fake news intentionally.

So let’s play a game! Let’s call this game “Separate the Truth from the Myths.” Let’s see how you do.

  1. Bat Boy Sighted in NYC Subway (probably too expensive to get a condo in Manhattan)
  2. Obama Appoints Martian Ambassador (but the Senate will request Matt Damon since he’s already lived and farmed on Mars)
  3. Skynet is a Reality (Hey, even Iron Man showed up at the Senate to tell them so!)
  4. Ted Cruz Shot JFK (okay, so it actually was his dad, but accusing Ted Cruz is more funny)

All but one of these stories appeared in the highly credible “National Enquirer” or “Weekly World News.” That’s like buying a copy of the “Mad Magazine” (for you old timers) or reading “The Onion” (for you young whippersnappers) expecting the “truth” from these satirical publications (see Figure 1).

Figure 1: Real Headlines from “Less Than Credible” Sources

However the below stories in Figure 2 where plastered across social media sites as if they were the truth, and as you can see from the engagement numbers, lots of people took the time to read these “truths.”

Figure 2: Social Media Fake News and Number of Views

Data Science And Common Sense
As a data scientist, we need to know not to accept the “truth” without applying some common sense. For all the fancy training in neural networks, artificial intelligence and machine learning, it’s hard to replace “common sense” as a necessary data scientist characteristic. Let’s walk through an example of how a data scientist might approach one of the sensational stories that recently popped up on social media (see Figure 3).

Figure 3: The Guardian, September 26, 2016

OMG, murders are up 10.8% in the biggest percentage increase since 1971, according to a highly credible source like the FBI. It’s become the “Walking Dead” out there!

Sensational headlines grab attention and incite fear and dread. “Dirty Laundry” sells. But the problem with data at the aggregate level is that it:

  • Distorts the real truth (or root cause) of what’s the problem, and
  • It is not actionable

The above headline could lead to the conclusion that the current criminal and rehabilitation policies have failed and everything should be thrown out. But there are no details as to what aspects of these programs are broken and no triage of the root causes in order to explore what might be done to fix the problem. As a data scientist, one must demand the granular details so that we can turn the data into insights in order to make the information actionable, such as:

This is a good starting point. If we want to address the increase in murders, we need to drill into each individual murder (and attempted murder) in those 10 cities. We need to keep drilling into the granular details in order to identify those variables and metrics that might be predictors of murders and attempted murders.

For example, we could identify the specific blocks of these cities where the murders are occurring, or the time of day and day of week, or the time of the year, or any special events that occurred right before the murders, etc. We could explore other variables that might be indicative of an increase in murder (e.g., % of broken homes, % of children born out of wedlock, % of high school dropouts, % of drug addicts, unemployment rate among male adults, increase in graffiti).

Once we know those variables that are predictive of murders, then we have a focus as to where we can start fixing the problem, taking corrective actions such as adding more police or community outreach, reducing high school dropouts, increasing drug arrests, testing different programs and approaches, measuring program effectiveness, learning and improving. Now that’s thinking like a data scientist.

Data Scientist Lessons Learned
What are the lessons that we can take away from this “opinions as facts” syndrome?

  • Common sense is critical. Don’t accept “truths” at face value. Demand more details in order to identify and quantify those variables and metrics that might be predictive or indicative of the researched problem.
  • You can’t fix the business – or the country – without drilling into the details and the potential causal factors. We need insights that are drawn from facts that are supported by granular data so that we know what actions to take. With these detailed insights in hand, we now know where to invest our scarce financial and human resources.
  • Details matter. At the aggregate level, the headlines may be sensational, but it is not insightful or actionable until you get into the details. Remember Simpson’s Paradox.
  • Data quality, accuracy and reasonableness are important, especially if you are trying to make business-impactful decisions based upon that data. Business users, if they are expected to use the data to support decisions, must have confidence in the data. “Facts as Facts” are critical if we want to overcome decisions being made on a traditional basis such as gut, hearsay and history.

The good data scientist learns not to trust anything at first blush; that while opinions might yield variables and metrics that might be better predictors of performance, in the end the data scientists need to validate each of these variables and metrics to quantify if they really are better predictors of performance.

In the movie “Star Wars: The New Hope," the weak-minded Storm Troopers were easily dissuaded from pursuing the truth about the droids by Obi-Wan Kenobi’s use of the Jedi Mind Trick to plant the “truth” in their weak minds.

Don’t be weak-minded about seeking the truth. Use your common sense to challenge the “truth,” and get into the granular details so that one can identify and quantify those variables and metrics that are better predictor or indicators of the problems.

And beware the “These aren’t the Droids you’re looking for” syndrome. That’s for the weak-minded.

The post Election Data Science and the Death of Truth appeared first on InFocus Blog | Dell EMC Services.

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

IoT & Smart Cities Stories
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
Chris Matthieu is the President & CEO of Computes, inc. He brings 30 years of experience in development and launches of disruptive technologies to create new market opportunities as well as enhance enterprise product portfolios with emerging technologies. His most recent venture was Octoblu, a cross-protocol Internet of Things (IoT) mesh network platform, acquired by Citrix. Prior to co-founding Octoblu, Chris was founder of Nodester, an open-source Node.JS PaaS which was acquired by AppFog and ...
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...