@ThingsExpo Authors: Elizabeth White, Ed Featherston, Yeshim Deniz, James Carlini, Xenia von Wedel

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Big Data Storymap Revisited | @BigDataExpo #BI #IoT #M2M #BigData #Analytics

I thought I’d take the opportunity to re-visit the storymap to see what we have learned over the past nearly 4 years

In January 28, 2013, we released the “Big Data Storymap.” Since releasing the storymap, we have gotten lots of positive feedback. It really seemed to work in highlighting the key aspects and approaches to achieving big data success. So I thought I’d take the opportunity to re-visit the storymap to see what we have learned over the past nearly 4 years – what we got right and what we need to tweak – to ensure that the storymap is as insightful and actionable to readers as ever (see Figure 1).

Figure 1: Big Data Storymap

Landmark #1: Explosive Market Dynamics

The purpose of Landmark #1 was to highlight the market challenges that were necessitating a different approach to integrating big data (data and analytics) into one’s business (we used cute landmarks instead of phases to keep in the spirit of the storymap).

In the original blog, we discussed how organizations that don’t adapt to big data risk the following impacts to their business models:

  • Profit and margin declines
  • Market share losses
  • Competitors innovating faster
  • Missed business opportunities

We also provided some examples of how organizations could exploit big data to power their businesses, including:

  • Mine social and mobile data to uncover customers’ interests, passions, associations, and affiliations
  • Exploit machine data for predictive maintenance and operational optimization
  • Leverage behavioral insights to create a more compelling user experience
  • Integrate new big data innovations to modernize data warehouse and business intelligence environments (real-time insights, predictive analytics)
  • Become a data-driven culture
  • Nurture and invest in data assets
  • Cultivate analytic models and insights as intellectual property

Assessment: A+. Yea, I think we got this one right. The business potential is too significant for organizations to ignore, and the Internet of Things (IoT) is only going to make data and analytics more indispensable to the future success of an organization. Also, if I were to redo the storymap, I’d definitely replace the river with a lake.

For more business challenges and opportunities afforded by big data, check out these blogs:

Landmark #2: Business and IT Challenges

The purpose of Landmark #2 was to highlight the significant challenges that organizations faced in trying to transform their business intelligence and data warehouse environments to take advantage of the business benefits offered by big data.

The chart highlighted how traditional business intelligence and data warehouse environments are going to struggle to manage and analyze new data sources because of the following challenges:

  • Rigid data warehouse architectures that impede exploiting immediate business opportunities
  • Retrospective analysis that report what happened but doesn’t guide business decisions
  • Social, mobile, or machine insights that are not available in an actionable manner
  • Batch-oriented processes which delay access to the data for immediate analysis and action
  • Brittle and labor intensive processes to add new data sources, reports, and analytics
  • Environments that were performance and scalability challenged as data scales to petabytes
  • Business analysis limited to aggregated and sampled data views
  • Analytic environments unable to handle the tsunami of new, external unstructured data sources

Assessment: C. I under-estimated the cultural challenges of moving from Business Intelligence / Data Warehouse to Data Science / Data Lake; the challenge to unlearn old approaches so that one can embrace new approaches. I also missed the growing important of the data lake as more than just a data repository; that the data lake would transform into the organization’s collaborative value creation platform that brings Business and IT stakeholders together to exploit the economic value of data and analytics.

For more details on the challenges of transforming from a Business Intelligence to Data Science mentality, check out the below blogs:

Landmark #3: Big Data Business Transformation

The purpose of Landmark #3 was to provide a benchmark that helped organizations understand how effective they were in leveraging data and analytics to power their business models. The Big Data Business Model Maturity Index introduced 5 stages of measuring how effective organizations are at exploiting the business transformation potential of big data:

  • Business Monitoring – deploys business intelligence to monitor on-going business performance
  • Business Insights – leverages predictive analytics to uncover actionable insights buried in the detailed transactional data plus the growing wealth of internal and publicly available external data – at the level of the individual (think individual behavioral analysis)
  • Business Optimization – embeds prescriptive analytics (think recommendations) into existing business processes to optimize select business operations
  • Data Monetization – aggregates the insights gathered at the individual level to identify “white spaces” in unmet market and customer demand that can lead to new products, services, markets, channels, partners, audiences, etc.
  • Business Metamorphosis – the cultural transformation to data and analytics as the center of the organization with incentives around the collection, transformation, and sharing of data and analytics including how employees are hired, paid, promoted, and managed.

Assessment: A+. Nailed it! While the phase descriptions have evolved as we have learned more, this is probably my most important contribution to the world of Big Data – the “Big Data Business Model Maturity Index.” Not only does the maturity index help organizations understand where they are today with respect to leveraging the business model potential of big data, but it provides a guide to help them become more effective. Yeah, I finally got one right!!

If you are interested in learning more about the “Big Data Business Model Maturity Index,” check out these blogs:

Landmark #4: Big Data Journey

The purpose of Landmark #4 was to define a process that drives alignment between IT and the Business to deliver actionable, business relevant outcomes. The steps in the process were:

  • Identify the targeted business initiative where big data can provide competitive advantage or business differentiation
  • Determine – and envision – how big data can deliver the required analytic insights
  • Define over-arching data strategy (acquisition, transformation, enrichment)
  • Build analytic models and insights
  • Implement big data infrastructure, technologies, and architectures
  • Integrate analytic insights into applications and business processes

Assessment: B. While I think I got the process right (especially starting with the Business Initiatives, and putting the technology toward the end), I missed on the importance of identifying the business stakeholder decisions necessary to support the targeted business initiative. It is the decisions (or use cases, which we define as clusters of decisions around a common subject area) that are the linkage point between the business stakeholders and the data science team.

Here is an additional blog that further drills down into the importance of the role of decisions in delivering business benefits:

Landmark #5: Operationalize Big Data

The purpose of Landmark #5 was to define a data science process that supported the continuous development and refinement of data and analytics in operationalizing the organization’s big data capabilities. This process included the following steps:

  • Collaborate with the business stakeholders to capture new business requirements
  • Acquire, prepare, and enrich the data; acquire new structured and unstructured sources of data from internal and external sources
  • Continuously update and refine analytic models; embrace an experimentation approach to ensure on-going model relevance
  • Publish analytic insights back into applications and operational and management systems
  • Measure decision and business effectiveness in order to continuously fine-tune analytic models, business processes, and applications

Assessment: C-. While again I think I got the process right, recent developments in determining the economic value of data and analytics will greatly enhance the business critical nature of this process. Data and analytics as digital assets exhibit unique characteristics (i.e., an asset that appreciates, not depreciates, with usage and can be used simultaneously across multiple business use cases) to make them game-changing assets in which to invest. All I can say at this point is “Watch this space” because “you ain’t seen nothing yet!”

Blogs that expand on data and analytics operationalization concepts include:

Landmark #6: Value Creation City

The purpose of Landmark #6 was to provide some examples of the business functions that could benefit from big data including:

  • Procurement to identify which suppliers are most cost-effective in delivering high-quality products on-time
  • Product Development to identify product usage insights to speed product development and improve new product launches
  • Manufacturing to flag machinery and process variances that might be indicators of quality problems
  • Distribution to quantify optimal inventory levels and supply chain activities
  • Marketing to identify which marketing campaigns are the most effective in driving engagement and sales
  • Operations to optimize prices for “perishable” goods such as groceries, airline seats, and fashion merchandise
  • Sales to optimize account targeting, resource allocation, and revenue forecasting
  • Human Resources to identify the characteristics and behaviors of the most successful and effective employees

Assessment: A. Yea, I felt all along that the real value of big data would only be realized when we got technology out of the way and instead focused on understanding where and how big data could deliver business value and business outcomes. As I like to say, the business is not interested in the 3 V’s of Big Data (Volume, Variety and Velocity) as much as the business is interested in the 4 M’s of Big Data: Make Me More Money!

Blogs that go into more details on the business value aspects of big data include:

Big Data Storymap Assessment
We did a pretty good job of assessing the Big Data market with the Big Data Storymap 4 years ago. Much has happened the past 4 years that have helped to refine the Storymap lessons and recommendations. I hope the next 4 years are equally fruitful in providing more clarity to help organizations to understand where and how they can apply big data to power their business models.

If you want to learn more, my big data books provide more details on each of Big Data Storymap Landmarks. Check them out if you are bored, or give them as a Christmas present (a gift that just keeps on giving)!

The post Big Data Storymap Revisited appeared first on InFocus Blog | Dell EMC Services.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@ThingsExpo Stories
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...