@ThingsExpo Authors: Ed Featherston, Elizabeth White, Liz McMillan, Jason Bloomberg, Pat Romanski

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Citizen Data Scientist, Jumbo Shrimp | @CloudExpo @Schmarzo #BigData

Okay, let me get this out there: I find the term 'Citizen Data Scientist' confusing

Citizen Data Scientist, Jumbo Shrimp, and Other Descriptions That Make No Sense

Okay, let me get this out there: I find the term “Citizen Data Scientist” confusing. Gartner defines a “citizen data scientist as “a person who creates or generates models that leverage predictive or prescriptive analytics but whose primary job function is outside of the field of statistics and analytics.”

While we teach business users to “think like a data scientist” in their ability to identify those variables and metrics that might be better predictors of performance, I do not expect that the business stakeholders are going to be able to create and generate analytic models. I do not believe, nor do I expect, that the business stakeholders are going to be proficient enough with tools like SAS or R or Python or Mahout or MADlib to 1) create or generate the models, and then 2) be proficient enough to be able to interpret the t-tests, f-scores, p-values and residuals necessary to ascertain the analytic model’s goodness of time.

No one would say “Citizen Lawyer” or “Citizen Nuclear Physicists” or “Citizen Physician.” I guess a “Citizen Physician” would be someone who “practices medicine but whose primary job function is outside of the field of medicine (meaning that they’ve had no training in medicine or medical procedures).” They call those people quacks (not quants…he-he-he).

WebMD doesn’t make someone a doctor any more than analytics makes someone a data scientist. Analysis of the analytic results and insights is an important step in the process, particularly when the results contradict each other. Data scientists provide the necessary experience about the different analytic techniques and algorithms required to decipher the results, validate the results and then turn the results into actions or recommendations.

What’s wrong with the definition is that it doesn’t properly acknowledge the deep training in analytic disciplines such as machine learning, cognitive computing, data mining, computer programming, and applied mathematics. It also dismisses the critical importance of gaining hands-on, data science experience through years of apprenticeships and tutelage under the guidance of master data scientists.

In order to understand the importance of the role of the data scientist, I solicited the help of the best data scientist that I know …Wei Lin. Wei and I have done numerous big data projects together and every time I engage with Wei, I learn tons. So naturally, I’d call upon a true master data scientist to help me write this blog.

Data Scientist Capabilities Are a Good Starting Point…
The starting point for the data scientist discussion starts with an understanding of the types of tasks at which a data scientist must become proficient. Below is a summary of these tasks. I think you can quickly see that an effective data scientist requires a wide and deep range of capabilities including:

  • Data acquisition. The data scientist is going to pull data from a wide variety of sources in a wide variety of formats. Some of the data will be accessible as tables using SQL. However, much of the data will be in log files and will be extracted using tools such as R and Python to grab the raw log files. Some of the data will be pulled from websites, in which case one can either use the provided API’s (if there are API’s) or they screen scrape the data. A wide variety of expertise across a wide variety of tools is required to acquire the data from whatever the source may be – structured (tables, csv), semi-structured (log files) and unstructured (text files, documents, images, video files).
  • Data preparation. The data scientist needs to go through a process of cleaning up the data (especially if screen scraping was used), normalizing, aligning, and enriching (adding new variables such as frequency, recency, monetary and indices) the data. There is a common sense component required during this process to ensure that one is aligning like levels of granularity and is comparing like entities. Tools used here include SQL, R, Python and Java.
  • Data exploration/data visualization. The data scientist then starts to explore the data looking for outliers and visual correlations in the data. This is where an inquisitive mind is useful as the data scientist digs deeper and deeper into the granular data and looks for opportunities to link other data sources. Missing values may be discovered in the exploration phase, in which case the data scientist needs to decide how to handle the missing values. Tools used here include Tableau, Spotfire and R (ggplot2).
  • Model development. This is where the data scientist starts to quantify cause and effect by actually building predictive models. Quantifying correlations coefficients, statistical errors and residuals using tools such as SAS, R, Python, MADlib, and Mahout is required to ascertain if the model being built is more predictive or not.
  • Model validation. The data scientist then needs to determine the model “goodness of fit” using measures such as F-test, t-tests and p-values. The tools that were used to build the model (SAS, R, Python, MADlib, Mahout) provide the goodness of fit metrics.
  • Results visualization: Once the data scientist has a model with which they are confident that is “good enough” given the problem that they are trying to address (see my blog “Understanding Type I and Type II Errors”), then the data scientist needs to use many of the same data visualization tools (Tableau, Spotfire, ggplot2) to determine the optimal way to present the results so that the users can understand the results in order to act on the analytic results.

But The Key Is the Experience
Understanding algorithms is different from deciphering the results and translating the knowledge into business actions or client treatment. Going back to our WebMD example, a person who reads WebMD will have challenges trying to match their symptoms to wide variety of potential diseases and illnesses (except for the easy, more frequent illnesses), and to properly prescribing the “right” mix of medications, treatments and therapy.

Data scientist often frames a question into its business value and data context. It makes question more readable. Those questions could go in several different levels so rather than asking it all in one, the question itself could be break down into smaller business questions. There are methods to further reduce complexity by dimension reduction, variable decomposition or principle component analysis, etc.

There are many analytic algorithm and modeling options. Choosing a proper algorithm could be a challenge. The alternatives are to run large number of algorithms to search. With that, large number of results will need to be analyzed.

Interpreting results is a complex task. By running a large number of algorithms, the results tend to partial converge or partial conflicting. The conflict resolution and the weights of the variables require further modeling or ensemble.

Data Science Requires More Than Smart
But it isn’t just the analytics capabilities, skills, training, apprenticeship and hands-on experience that make an outstanding data scientist. Our best data scientists also exhibit outstanding “bed side manners” or humility. They understand the power of humility that immediately puts others at ease, allowing for a more open and more inclusive conversation.  To me, this is the real key to being an effective data scientist, where I define “effective” to mean “comes up with reasonable recommendations that the users can understand and take action on.” The best data scientists quickly learn that in order to deliver outstanding outcomes, they need to be able to engage, listen and learn from others of all types.

But I could argue that humility is the key to success no matter your profession. Whether becoming a physician, or a nuclear physicist, or a lawyer or a barista or a teacher/coach, humility is imperative for continued growth and mastery of your craft.

As we like to say during our Big Data Vision Workshop engagements, all ideas are worthy of consideration. Because the minute you think you know all the answers, is the time when you are no longer relevant to the conversation.

To quote the “Lego Movie”

“A special ‘Master Builder’ will defeat Lord Business and become the greatest ‘Master Builder’ of all. The key to true master building is to believe in yourself and follow your own set of instructions inside your head.”

Sounds like a Master Data Scientist to me (especially when said in Morgan Freeman’s voice)!

The post Citizen Data Scientist, Jumbo Shrimp, and Other Descriptions That Make No Sense appeared first on InFocus Blog | Dell EMC Services.

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Dell EMC’s Big Data Practice.

As a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

@ThingsExpo Stories
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...