Welcome!

@ThingsExpo Authors: Yeshim Deniz, Zakia Bouachraoui, Elizabeth White, Carmen Gonzalez, Courtney Abud

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Big Data Dilemma: Save Money vs Make Money | @BigDataExpo #IoT #BigData #Analytics

Setting the tone for your Big Data and analytics efforts and investments

Big Data Dilemma: Save Me Money Versus Make Me Money

My friend Dan sent me this press release (since he knows that I like all things “Data Analytics” related). In the press release, “Boeing Announces Data Analytics Agreements with Six Airlines,” Boeing announces that they are providing advanced analytic solutions to several airline customers including:

  • All Nippon Airways (ANA) signed a renewal contract for Airplane Health Management (AHM) on its entire future fleet of Boeing 787 aircraft. ANA uses AHM tools to monitor their aircraft in real time and proactively manage maintenance operations more efficiently.
  • British Airways signed a contract for Wind Updates, currently installed on 88 airplanes with plans for additional fleet integration. Customers of Wind Updates typically average a savings of 200-400 lbs. of fuel per flight by leveraging real-time information about atmospheric conditions to improve performance.
  • Delta Air Lines signed an agreement to use Airplane Health Management (AHM) on its Boeing 737, 747, 767 and 777 fleets. Delta uses AHM’s analytics-based predictive alerts to reduce delays and cancellations by scheduling maintenance in a controlled manner, to avoid schedule disruptions.
  • GOL signed an agreement to use the Engine Fleet Planning and Costing (EFPAC) tool, which significantly reduces operating costs by determining specific engine management practices over the life span and enabling better decision making.
  • Pobeda Airlines signed a contract to deploy Fuel Dashboard services across its fleet of Boeing 737s. Fuel Dashboard helps airlines reduce fuel consumption 2-7 percent annually.

This is a smart move by Boeing to create new services (and new sources of revenue) to help its airline customers get more value out of their investments in Boeing aircraft. It even sets the stage for Boeing to expand beyond just servicing and supporting Boeing aircraft to servicing other aircraft (Airbus, Bombardier, Embraer Lockheed, McDonnell Douglas, etc.) in order to create even more monetization opportunities for Boeing.  I love it!

However, I’m always just a bit distressed by organizations that are so quick to give up their data for a short-term win. It won’t be long until all the airlines have the same analytic services being provided by Boeing or GE or Pratt & Whitney.  And if everyone has the same analytics, what’s the long-term source of competitive advantage?  In fact, I think it boils down to a very important organizational and cultural mentality:

Does your organization see big data as an opportunity to “Save Me More Money”, or does your organization see big data as an opportunity to “Make Me More Money”?

This is not an insignificant question, because it sets the tone for your big data and analytics efforts and investments, and how committed your organization is to leveraging data and analytics to power the business.

It’s a corporate cultural and management issue and I see it all the time in my big data travels. Some companies are focused on the “save me more money” aspects of big data (which it then makes sense to outsource) but others are focused on the “make me more money” aspects of big data where they see data and the associated insights as a means for uncovering new monetization opportunities.  This corresponds to Phase IV: Insights Monetization (see Figure 1).

Figure 1: Big Data Business Model Maturity Index

The “Insights Monetization” phase of the Big Data Business Model Maturity Index guides organizations to focus on capturing, refining and re-using the analytic insights (captured in Analytic Profiles – see “Orphaned Analytics” blog), to identify “white spaces[1]” in the markets to create new monetization opportunities such as:

  • New products
  • New services
  • New markets
  • New channels
  • New audiences
  • New partners

So what insights might these airlines be forfeiting – insights that might lead to new monetization opportunities – by outsourcing some of their analytics to Boeing?  In order to answer this question, we first need to identify the airlines’ key business entities; that is, what are the business entities around which the airline would want to gather behavioral insights such as tendencies, inclinations, propensities, usage patterns, interests, passions, associations and affiliations?  Well, my starter list of key business entities for an airline would include the following:

  • Airplanes
  • Routes
  • Hubs
  • Pilots
  • Mechanics

The next step would be to identify (brainstorm) the types of [predictive] insights that one might want to capture on each key business entity, such as:

  • Airplanes: Which airplanes are most efficient from an operational as well as performance perspective? Which airplanes are most efficient with which routes and under what weather conditions (seasonality)? Which airplanes are “easiest” to maintain? Which airplane configurations are most fuel efficient? Which airplane configurations get the highest passenger satisfaction and referral ratings from the airlines’ “most valuable” passengers? Which airplanes are easiest to re-configure?
  • Routes: Which routes are most efficient from an operational as well as performance perspective? Which routes are most efficient under weather conditions (seasonality)? Which routes to the same destinations get the highest satisfaction, Net Promoter Scores (NPS) and referral ratings from the airline’s “most valuable” passengers? Which routes have the lowest percentage of weather-induced delays?
  • Pilots: Which pilots are most efficient from an operational as well as performance perspective? What are the background characteristics (tenure, experience, certification, training, demographics, behaviors) of the “best” pilots”? Which pilots are most effective on which routes and under what weather conditions?

I think you can start to see the realm of what’s possible (if not, you may want to sign up for one of our Vision Workshops) with respect to the types and levels of insights that can be gathered about the organization’s key business entities even from activities that start out to “save me more money” perspective.

Transportation Industry at Phase IV
Let’s see another example of Phase IV in action: transportation.  Let’s say that you operate a fleet of vehicles (company cars, rental cars, taxis, limos, delivery trucks, shipping trucks, etc.).  While the car and truck manufacturers could (and probably will) offer analytics to help fleet operators to reduce their operating and maintenance costs, the operators of those vehicles should care about the analytics because those vehicles are emitting tons of potentially valuable data about customer preferences and usage patterns, travel congestion, destination preferences and product performance.  For example:

  • What features are most used on the car (could guide the development, pricing and packaging of vehicle features)?
  • What radio stations are most used on the car (could create digital marketing and cross-sell opportunities)?
  • What routes do passengers take most often (could create data that might be valuable to city and road planners, and could also create marketing and promotional opportunities for nearby services)?
  • Where are the most common destinations by what times of the year (could create marketing and promotional opportunities)?
  • Where do most accidents take place (could be used by insurance companies to set rates and by city management for road maintenance planning)?
  • What driving patterns are most unusual (could be used to identify potentially drunk drivers, texting drivers or drivers playing Pokemon Go)
  • Etc.

In fact, the “exhaust” from the operation of these vehicles could be more valuable than the vehicle itself!!

Summary
It’s very seductive to chase after the “low hanging fruit” by choosing to outsource your big data “save me more money” efforts. And there is nothing wrong with those short-term wins.

However, organizations should not make short-term cost-saving decisions that sacrifice the longer-term monetization and competitive differentiation opportunities. If everyone is using the same analysis to run their businesses, then where are the sources of competitive differentiation?

If you look at analytics just as a way to drive out costs, then you probably should outsource as much analytics as possible. However, if you believe that the exhaust from your product and service usage might be more valuable than the product and/or service itself, then you need to embrace big data analytics as a source of competitive differentiation.

Yes Dan, our Big Data challenge is up-hill both directions!

[1] “White space” is defined as unmet and unarticulated needs in the market. It is where products and services don’t exist based on the present understanding of values, customer needs or existing competencies.

The post Big Data Dilemma: Save Me Money Versus Make Me Money appeared first on InFocus.

Read the original blog entry...

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

IoT & Smart Cities Stories
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
Atmosera delivers modern cloud services that maximize the advantages of cloud-based infrastructures. Offering private, hybrid, and public cloud solutions, Atmosera works closely with customers to engineer, deploy, and operate cloud architectures with advanced services that deliver strategic business outcomes. Atmosera's expertise simplifies the process of cloud transformation and our 20+ years of experience managing complex IT environments provides our customers with the confidence and trust tha...
Where many organizations get into trouble, however, is that they try to have a broad and deep knowledge in each of these areas. This is a huge blow to an organization's productivity. By automating or outsourcing some of these pieces, such as databases, infrastructure, and networks, your team can instead focus on development, testing, and deployment. Further, organizations that focus their attention on these areas can eventually move to a test-driven development structure that condenses several l...
The graph represents a network of 1,329 Twitter users whose recent tweets contained "#DevOps", or who were replied to or mentioned in those tweets, taken from a data set limited to a maximum of 18,000 tweets. The network was obtained from Twitter on Thursday, 10 January 2019 at 23:50 UTC. The tweets in the network were tweeted over the 7-hour, 6-minute period from Thursday, 10 January 2019 at 16:29 UTC to Thursday, 10 January 2019 at 23:36 UTC. Additional tweets that were mentioned in this...
Over the course of two days, in addition to insightful conversations and presentations delving into the industry's current pressing challenges, there was considerable buzz about digital transformation and how it is enabling global enterprises to accelerate business growth. Blockchain has been a term that people hear but don't quite understand. The most common myths about blockchain include the assumption that it is private, or that there is only one blockchain, and the idea that blockchain is...
Never mind that we might not know what the future holds for cryptocurrencies and how much values will fluctuate or even how the process of mining a coin could cost as much as the value of the coin itself - cryptocurrency mining is a hot industry and shows no signs of slowing down. However, energy consumption to mine cryptocurrency is one of the biggest issues facing this industry. Burning huge amounts of electricity isn't incidental to cryptocurrency, it's basically embedded in the core of "mini...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
The term "digital transformation" (DX) is being used by everyone for just about any company initiative that involves technology, the web, ecommerce, software, or even customer experience. While the term has certainly turned into a buzzword with a lot of hype, the transition to a more connected, digital world is real and comes with real challenges. In his opening keynote, Four Essentials To Become DX Hero Status Now, Jonathan Hoppe, Co-Founder and CTO of Total Uptime Technologies, shared that ...
At CloudEXPO Silicon Valley, June 24-26, 2019, Digital Transformation (DX) is a major focus with expanded DevOpsSUMMIT and FinTechEXPO programs within the DXWorldEXPO agenda. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of business. Only 12% still survive. Similar percentages are found throug...
Every organization is facing their own Digital Transformation as they attempt to stay ahead of the competition, or worse, just keep up. Each new opportunity, whether embracing machine learning, IoT, or a cloud migration, seems to bring new development, deployment, and management models. The results are more diverse and federated computing models than any time in our history.