Welcome!

@ThingsExpo Authors: Yeshim Deniz, Pat Romanski, Liz McMillan, Elizabeth White, Zakia Bouachraoui

Related Topics: @ThingsExpo, Industrial IoT, Agile Computing, Artificial Intelligence, @CloudExpo, @DXWorldExpo, FinTech Journal

@ThingsExpo: Article

Tips for Data Scientists | @CloudExpo #BigData #IoT #ML #AI #DataScience

I have come to realize that we also need to address the other side of the data science equation

I spend a lot of time helping organizations to “think like a data scientist.” My book “Big Data MBA: Driving Business Strategies with Data Science” has several chapters devoted to helping business leaders to embrace the power of data scientist thinking. My Big Data MBA class at the University of San Francisco School of Management focuses on teaching tomorrow’s business executives the power of analytics and data science to optimize key business processes, uncover new monetization opportunities and create a more compelling, engaging customer and channel engagement.

However in working with our data science teams, I have come to realize that we also need to address the other side of the data science equation; that we need to teach the data scientists in order for them to think like business executives. If the data science team cannot present the analytic results in a way that is relevant and meaningful to the business (so that it is clear what actions the business leaders need to take), then why bother.

In order to engagement more effectively with the business users, here are a couple of key points that the data science team needs to understand as they conduct their analytics:

#1: Tie the analytic results back to the organization’s key business initiatives, and more specifically, the organization’s key business decisions that drive them.
The data science team needs to understand thoroughly the key decisions that the business users are trying to make. Then, the data science team can present where and how the analytic results can help the business users make better decisions.

As part of ensuring that the analytic results are relevant and meaningful to the business, it is also critical to tie the analytic results back to the organization’s key financial or business drivers. Figure 1 shows an example of linking the analytics to the organization’s key financial and business drivers around the following business decision:

Which customers should receive which promotional offers?

Figure 1: Sample of Key Financial And Business Drivers

The Harvey Balls in Figure 1 show the relative impact that the promotional offer analytics would have on 6 key financial and business drivers in support of the customer targeting business decision.

Tying the analytic results back to organization’s financial or business drivers is key to ensuring that the data science work is relevant and meaningful to the business.

#2: Presentation of the analytic results is critical.
Don’t make the business users wade through the analytic output to try to figure out what’s important. Instead, make sure that the most meaningful analytic results stand out loud and clear to the business users. If the data supports it, make it stupidly clear where they should focus their attention and efforts.

For example, Figure 2 shows some sample analytic output that the data science team created around the business initiative of improving ground transportation effectiveness at a large location (e.g., shopping mall, port, arena) during a large event.

Figure 2: Raw Analytic Results

The business users had to look very hard at this slide to see what the slide was telling them about the business, and specifically what to do. That’s not what the business users want, and that is not how we ensure that our data science work is meaningful and actionable.

Instead, let’s apply some basic concepts to surface the meaningful and actionable insights. In Figure 3, we’ve developed some simple extensions to ensure that the meaningful and actionable insights come to the surface.

Figure 3: Presenting Actionable Insights

Instead of expecting the business users to wade through the analytics to determine what to do, Figure 3 highlights the key analytic insights or business “takeaways” (sometimes called “aha’s”) in the blue ribbon. Then the rest of the slide can illustrate how the analytics support the conclusions and insights. In particular, we have:

  • Highlighted the key actionable takeaways in the blue ribbon at the bottom of the analysis
  • We’ve removed extraneous bullet points, words and graphics that are not relevant to the key analytic takeaways.
  • We have highlighted the specific areas of the analysis that most loudly support our key takeaways.

Sometimes less really is more!

And if you really want to drive home your analytic points, get a marketing expert (thanks Phil Dussault) to present the analytic insights into a way that is engaging and exciting, while still being informative (see Figure 4).

Figure 4: Marketing Presentation of Analytic Results

Now that’s way cool!

Summary: “Thinking Like a Business Executive”
Data scientists can increase their value to the organization when they start to think like a business executive; to focus on how their business audience is going to consume the results of the analytics. The effectiveness of your data science work can be dramatically increased by:

  • Tying the analytic results back to the organization’s key decisions and the organization’s key financial and business drivers.
  • Effectively and clearly presenting the analytic results, insights and recommendations in a way that is engaging, informative and actionable to the business users.

When the data scientist has accomplished those objectives, then they’re well on their way to making themselves indispensable to the business and crossing the chasm to “thinking like a business executive.”

To hear a bit more about this “thinking like a business executive” approach, catch my “Respect the Data” presentation at the EMC Global Services booth at EMC World on Wednesday, May 4th at noon.

The post Tips for Data Scientists: Think Like a Business Executive appeared first on InFocus.

More Stories By William Schmarzo

Bill Schmarzo, author of “Big Data: Understanding How Data Powers Big Business” and “Big Data MBA: Driving Business Strategies with Data Science”, is responsible for setting strategy and defining the Big Data service offerings for Hitachi Vantara as CTO, IoT and Analytics.

Previously, as a CTO within Dell EMC’s 2,000+ person consulting organization, he works with organizations to identify where and how to start their big data journeys. He’s written white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power an organization’s key business initiatives. He is a University of San Francisco School of Management (SOM) Executive Fellow where he teaches the “Big Data MBA” course. Bill also just completed a research paper on “Determining The Economic Value of Data”. Onalytica recently ranked Bill as #4 Big Data Influencer worldwide.

Bill has over three decades of experience in data warehousing, BI and analytics. Bill authored the Vision Workshop methodology that links an organization’s strategic business initiatives with their supporting data and analytic requirements. Bill serves on the City of San Jose’s Technology Innovation Board, and on the faculties of The Data Warehouse Institute and Strata.

Previously, Bill was vice president of Analytics at Yahoo where he was responsible for the development of Yahoo’s Advertiser and Website analytics products, including the delivery of “actionable insights” through a holistic user experience. Before that, Bill oversaw the Analytic Applications business unit at Business Objects, including the development, marketing and sales of their industry-defining analytic applications.

Bill holds a Masters Business Administration from University of Iowa and a Bachelor of Science degree in Mathematics, Computer Science and Business Administration from Coe College.

IoT & Smart Cities Stories
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...