Welcome!

@ThingsExpo Authors: Ed Featherston, Liz McMillan, Xenia von Wedel, Jason Bloomberg, Yeshim Deniz

Related Topics: @DXWorldExpo, @CloudExpo, @ThingsExpo

@DXWorldExpo: Blog Feed Post

Connecting Big Data Project Management with Enterprise Data Strategy By @DDMcD | @BigDataExpo #BigData

Making the data analysis process effective and efficient is where good project planning and management come in

The Tip of the Spear II: Connecting Big Data Project Management with Enterprise Data Strategy
By Dennis D. McDonald

“If data analysis is Big Data’s "tip of the spear" when it comes to delivering data-dependent value to customers or clients, we also must address how that spear is shaped, sharpened, aimed, and thrown – and, of course, whether or not it hits its intended target.”

Introduction
In Meeting the Mission of Transportation Safety, Richard McKinney, U.S. Department of Transportation's CIO, describes four components for what I call an “enterprise data strategy”:

  1. Data governance
  2. Data sharing
  3. Data standards
  4. Data analysis

He also mentions additional factors relevant to DOT’s data strategy:

  1. The volume of data is increasing and we need to be ready for it.
  2. Managing data is not the same as analyzing it.
  3. We need to be thinking now about what type of analysis we need to be doing and what resources will be needed to do the analysis.

bdpm

Based on the 20+ personal, telephone, and email interviews I’ve conducted so far[2] as part of my big data project management research I would add a fourth item to McKinney's list:

  1. We need to spend at least as much time to planning and managing the people and business processes that make data analysis possible as we do the analysis process itself and the technologies that support it.

Tip of the Spear
If data analysis is Big Data’s “tip of the spear” when it comes to delivering data-dependent value to customers or clients, we also must address how that spear is shaped, sharpened, aimed, and thrown – and, of course, whether or not it hits its intended target.

We also want the processes associated with throwing that spear to be both effective and efficient.

Making the data analysis process – the tip of the Big Data spear -- effective and efficient is where good project planning and management come in.  Challenges to doing this in connection with data intensive projects are identifiable and include:

  1. Siloes. Data are often generated and managed in system- or mission-specific siloes. As a result, creating and implementing an effective enterprise-level data strategy that rises above and encompasses multiple programs, systems, and/or missions requires not just data analysis skills but a mix of technical, organizational, and political skills – not just good “project management.”
  2. Sharing. Making data accessible and useful often means that data need to be shared with systems and processes outside the control of those who "own" the data to be analyzed. Key steps in sharing data are that (a) data need to be identified and inventoried, and (b) technical and business ownership of the inventories data must be determined. In many organizations this inventorying is easier said than done and may require both manual and automated approaches to creating the necessary inventories.
  3. Standards. Efficient and sustainable analysis of data and metadata may require development or implementation of data standards. Existence and use of such standards differs by industry, data type, and system. The costs for developing and adopting standards to facilitate data sharing and analysis will also vary and may have cost and schedule implications at the project, program, enterprise, and industry or community levels.
  4. Delivering value. Modern data analysis tools and techniques provide mechanisms to identify patterns and trends from the increasing volumes of data generated by a steadily widening variety of data capture mechanisms. Challenges in predicting what will be found when data are analyzed places a premium on making sure we are asking the right questions. This in turn impacts our ability to justify project expenditures in advance.

Portfolio Management
Responding to the above challenges requires not only project management skills but also a project planning process that takes into consideration alignment with an organization’s goals and objectives.

As one of my interviewees suggested, the challenge faced in complex “big data” projects has just as much – if not more -- to do with overall strategy and “portfolio management” as with how individual projects are planned and managed. Effectively designing and governing a portfolio of projects and processes requires not only an understanding of how the portfolio supports (relates to, is aligned with, interacts with) the organization’s objectives; it should also incorporate a rational process for defining project requirements and then governing how the organization’s resources are managed and applied.

Given how pervasive and fundamental data are to an organization’s operation, skill in data science and analytics is a necessary element but such skill will not be, in many cases, a guarantor of success. Technical and analytical skills must be accompanied by effective planning, oversight, and management in order to ensure that the data analysis “spear” is being thrown in the right direction.

Delivering Value Quickly
Ideally a portfolio of projects will support an organization’s strategic plan and the goals or missions the organization is charged with pursuing. We may also need to “get tactical” by delivering value to the customer or client as quickly as possible, perhaps by focusing on better-controlled and better-understood product-centric data early on via a “data lake” approach.

Doing so will be good for the customer and will help create a relationship of trust moving forward. Such a relationship will be needed when complications or uncertainties arise and need to be dealt with.

In organizations that are not historically “data centric” or in organizations where management and staff have a low level of data literacy, an early demonstration of value from data analysis is especially important. An agile approach to project management, accompanied by openness, transparency, and collaboration, will help to accomplish this.

Unfortunately, challenges such as those identified above in many cases cannot be addressed effectively in tactically focused short-term projects given the usual pressures of time and budget. Such challenges can be complex or rooted in how the organization has been traditionally structured and managed.

Still, it’s not unusual for a tactically-focused “sprint” project, even while delivering an effective model or other deliverable, to uncover the need for a more global (or strategic) approach to managing data, metadata, data security, privacy, or data quality.

Balancing Tactics and Strategy
When focusing on delivery of useful data-related deliverables it always pays to keep two questions in mind:

  1. What needs to be done immediately to make data useful?
  2. What does this tell us about what needs to be done more globally in order to maintain and increase data usefulness?

Attention to enterprise-level data strategy while delivering useful results in the short term has implications beyond what is being attempted in an individual project’s scope. Treating data as an enterprise resource may even require changes to how the enterprise itself is managed. As we all know, it’s not unusual for change to be resisted.

An effective enterprise level data strategy will be one that balances the management of a portfolio of individual data intensive “agile” projects with parallel development of an upgraded enterprise data strategy. Doing one without the other could have negative consequences, for example:

  1. Focusing only on a narrowly defined data intensive analytics project by itself may generate immediate value through frequent useful deliverables but may not address underlying technical process issues that impact long-term efficiency and sustainability.
  2. Focusing only on an enterprise data strategy without delivering tactical benefits reduces the possibility that that less data-savvy managers understand the “big picture” down the road.

As experienced project managers know, concentrating on “quick and dirty” or “low hanging fruit” when under the gun to deliver value to a client in the short term can generate short term benefits. This same approach, however, may actually increase costs over time if strategic data management issues related to data standards or quality are repeatedly kicked “down the road.” Also, delivering a “strategy” without also engaging users in development of real-world analytical deliverables might mean that strategically important recommendations ends up gathering dust on the shelf somewhere.

Communication Strategy
As experienced project managers understand all too well one of the most important elements in effective project management is communication:

  • Communication among project staff
  • Communication with the client
  • Communication with stakeholders

In the case of the big data or data intensive project, even when focused on delivering incremental value to the customer by focusing initially on specific or narrowly targeted goals, we want communications about project activities, especially among key stakeholders, to focus both on tactical as well as strategic objectives.

This may require accommodating a variety of communication styles as well as different levels of data and analytical literacy especially when both business-focused and technology- or analytics-focused staff are involved. But if we do follow this balanced approach we will:

  1. Deliver a useful project.
  2. Develop a trusted relationship with the client.
  3. Build the foundation for a realistic sustainable enterprise data strategy going forward.

Summary
In summary, how a data-intensive project is planned must take into account both short- and long-term goals. This planning process must be a collaborative one and, even if led by the organization’s IT department – not an unusual situation – it must involve business or operating units right from the start in order to ensure success.

I’ll be turning my attention to this planning process in future posts. If you’re interested in learning more about this process please let me know.

Related reading:

[1] Copyright (c) 2015 by Dennis D. McDonald, Ph.D. Dennis is an independent Washington DC area management consultant. His services include preproposal research and analysis, proposal development and costing, marketing and sales support, project and program management, project plan development, requirements analysis, and strategic planning. Reach him by phone at 703-402-7382 or by email at [email protected]. An earlier version of this post was published at http://www.ddmcd.com/spear.html and distributed at the Dec. 8, 2015 ATARC Federal Big Data Summit in Washington, DC.

[2] Thanks are due the following for sharing their thoughts with me: Aldo Bello, Kirk Borne, Clive Boulton, Doug Brockway, Ana Ferreras, Keith Gates, Douglas Glenn, Jennifer Goodwin, Jason Hare, Christina Ho, Randy Howard, Catherine Ives, Ian Kalin, Michael Kaplan, Jim Lola, David McClure, Jim McLennan, Trevor Monroe, Brian Pagels, John Parkinson, Dan Ruggles, Nelson Searles, Sankar Subramanian, and Tom Suder.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder and partner at Cognitio Corp and publsher of CTOvision.com

@ThingsExpo Stories
BnkToTheFuture.com is the largest online investment platform for investing in FinTech, Bitcoin and Blockchain companies. We believe the future of finance looks very different from the past and we aim to invest and provide trading opportunities for qualifying investors that want to build a portfolio in the sector in compliance with international financial regulations.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Nordstrom is transforming the way that they do business and the cloud is the key to enabling speed and hyper personalized customer experiences. In his session at 21st Cloud Expo, Ken Schow, VP of Engineering at Nordstrom, discussed some of the key learnings and common pitfalls of large enterprises moving to the cloud. This includes strategies around choosing a cloud provider(s), architecture, and lessons learned. In addition, he covered some of the best practices for structured team migration an...
No hype cycles or predictions of a gazillion things here. IoT is here. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, an Associate Partner of Analytics, IoT & Cybersecurity at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He also discussed the evaluation of communication standards and IoT messaging protocols, data...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his session at 21st Cloud Expo, Raju Shreewastava, founder of Big Data Trunk, provided a fun and simple way to introduce Machine Leaning to anyone and everyone. He solved a machine learning problem and demonstrated an easy way to be able to do machine learning without even coding. Raju Shreewastava is the founder of Big Data Trunk (www.BigDataTrunk.com), a Big Data Training and consulting firm with offices in the United States. He previously led the data warehouse/business intelligence and B...
"IBM is really all in on blockchain. We take a look at sort of the history of blockchain ledger technologies. It started out with bitcoin, Ethereum, and IBM evaluated these particular blockchain technologies and found they were anonymous and permissionless and that many companies were looking for permissioned blockchain," stated René Bostic, Technical VP of the IBM Cloud Unit in North America, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Conventi...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
Smart cities have the potential to change our lives at so many levels for citizens: less pollution, reduced parking obstacles, better health, education and more energy savings. Real-time data streaming and the Internet of Things (IoT) possess the power to turn this vision into a reality. However, most organizations today are building their data infrastructure to focus solely on addressing immediate business needs vs. a platform capable of quickly adapting emerging technologies to address future ...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...