Welcome!

@ThingsExpo Authors: Zakia Bouachraoui, Yeshim Deniz, Elizabeth White, Pat Romanski, Liz McMillan

Blog Feed Post

The Internet of (Secure) Things – Embedding Security in the IoT

By

We’re seeing a glimmer of the future – the Internet of Things (IoT) – where anything and everything is or contains a sensor that can communicate over the network/Internet. The underlying technology enabling IoT is Machine-to-Machine (M2M) communications. Your running shoe tracks your workouts, sending the data to a mobile app. Your wristband tracks your daily activities, including sleep patterns. Your smartphone controls your television. Your tablet displays recorded videos from your home DVR, anywhere in the world. Your refrigerator tracks your food consumption and contacts a nearby grocery store to restock (someday delivered by drones!) Your car self-tunes and in the future may self-drive and be aware of your schedule (so will self-start and adjust the environment when it’s time to go to work). These are examples of consumer-oriented sensors and devices, but that has occurred in parallel with business, professional, infrastructure, government and military applications. Here are some examples…

Healthcare: Think of medical devices and how they’ve progressed – pin pricks for testing blood sugar to diabetes pumps to contact lenses that can monitor your blood sugar. Pacemakers can report statistics on your heart to doctors and hospitals.

Homes/Offices: Companies and utilities are building sensors into major appliances and HVAC systems. You can opt-in to smart metering so that a utility can load balance energy distribution. That capability is starting to reach into the home, with NEST thermostats and smoke detectors for example. Security alarm systems have communicated with operations centers and police for a long time, but now allow monitoring and control from your smartphone. These smart home technologies are also being applied to smart office buildings. Sensors throughout a building monitor power demand, air temperature and moisture, light levels and external factors (e.g. weather reports). That data is integrated with the building control system and room schedules to optimize energy consumption.

Transportation: For automotive vehicles, there are speed and red-light cameras, EZ Pass toll payments, bridge stress sensors, and traffic management systems outside the vehicle. Inside, there are diagnostic monitors, heads-up displays, adaptive cruise control, and integration with smartphone or in-vehicle GPS/mapping systems. Similar sensor systems exist for rail, sea and air transportation.

Agriculture: GPS-directed combines and sensors on everything from sprinkler/irrigation systems to soil/fertilizer quality are connected via a mesh network to optimize production and quality (thanks Ray Van Houtte for your graduate work in the 1970’s!)

Military: Sensor systems are being used to improve operations from logistics to the battlespace. By tracking the details of every item, the supply chain can be dynamic and more easily optimized. Sensors on drones and robots – air, land and sea – communicate to human operators, analysts and soldiers in the field to improve situational awareness and tactics. There’s even an Android app that leverages M2M communication to a scope to enable a sniper rifle to hit the target every time, regardless of the shooter’s expertise.

Last year, there were over 10 billion connected devices, and estimates predict this number to climb to anywhere from 30 to 50 billion by 2020. In terms of sensors, HP Labs estimates that we’ll hit 1 trillion before too long. To leverage the data and information across a number of these areas, HP Labs is working on a project called CeNSE (Central Nervous System for the Earth)

CeNSE intends to deploy billions of nanoscale sensors that detect and communicate information across all five human senses. The goal is to better understand our world in order to improve resource management and predict dangers to safety and security in the physical world.

hpinternetofthings

With these burgeoning capabilities, there needs to be some focus on cyber security. In my previous blogs, I wrote about continuous monitoring. In today’s current environments, attempts to continuously monitor enterprise security are challenged to track their current assets, which for large organizations number in the hundreds of thousands. The IoT will multiply those assets by a million or more. Today those assets are built on a variety of platforms and operating systems; the software is rarely patched and their communications are not secured. We’ve already seen examples of exploits of these systems – automobile telematics, pacemakers, smart TVs, and more. Science fiction depicts the worst of these scenarios in movies like “Terminator” or “The Matrix”, with machines taking over the world. In the latest of these, Ray Kurzweil’s idea of the singularity moves to the dark side, with a human intelligence taking control of the IoT in “Transcendence

Things aren’t necessarily so dire. The need to embed security in the IoT, from sensors to mobile apps to back-end infrastructure, is recognized and there are a number of efforts working to address the issue.

In private industry, there are companies using their expertise in cybersecurity to provide solutions in this space – QNX, acquired by Blackberry, and Mocana. QNX is a mature Unix operating system that over the years has built the most secure real-time operating system (RTOS) for embedded systems, Neutrino. It’s being used in automobile systems, home appliances, and to secure M2M communications.

Mocana is working on a new type of product code called AtoM (App-to-Machine) that will allow different users to manage and control devices securely, depending on their authority. In addition, they have built a Device Security Framework that provides end-to-end security for any device, based on US Government standards and regulations

On the open source side, there is an effort to build common communication platforms and interfaces for the IoT called AllJoyn that simplifies device information and configuration, onboarding, notification, control, and audio streaming.

Similarly, the AllSeen Alliance expands AllJoyn’s framework to multiple manufacturers and communication fabrics.

By enabling the integration of the variety of devices to communicate and connect, these initiatives will provide a common framework to secure and monitor the IoT. It’s something we have to build in to the IoT ecosystem now. If we wait, we’ll be playing catch-up, just like we are in Internet security – but at a much larger scale. Of course, with billions and trillions of devices and sensors, the accumulation of this information leads to a discussion of big data and big security data, which I will address next time.

 

This post first appeared on George Romas’ HP Blog.

Read the original blog entry...

More Stories By Bob Gourley

Bob Gourley writes on enterprise IT. He is a founder of Crucial Point and publisher of CTOvision.com

IoT & Smart Cities Stories
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...