Welcome!

@ThingsExpo Authors: Jason Bloomberg, Trevor Parsons, Peter Silva, Carmen Gonzalez, Elizabeth White

Related Topics: @ThingsExpo, Java, Wireless, Linux, Web 2.0, Big Data Journal

@ThingsExpo: Article

How iBeacons Work for Indoor Location Based Services

Technical Guide and Recommendations

My colleague Peter Rogers is long suffering and obviously in need of sunshine.  He sacrificed his weekend to answer questions I presented him last week on the subject of iBeacons and how they work. I want to thank Peter for the following:

There is a lot of excitement about Apple's new iBeacon technology but most people still don't realise what it is or how to use it.

iBeacon is actually used in two contexts:

  1. It is primarily a Bluetooth Low Energy (BLE) Profile that enables a device to broadcast its relative position
  2. It is any hardware device that uses the iBeacon BLE Profile

The following paragraph illustrates this terminology effectively. A third-party beacon can use the iBeacon BLE profile to advertise its relative location and therefore be classed itself as an iBeacon. An iPhone can also use the iBeacon BLE profile itself to act as a Virtual iBeacon. In this case the power levels are generally higher and so you may get a more accurate result. There is nothing to stop an Android 4.3 device being able to use the iBeacon BLE profile to advertise itself as a Virtual iBeacon too. In fact any device that supports BLE can communicate using the iBeacon BLE Profile. The core difference that iOS 7 offers is that is normalises the results from the iBeacon (in order to avoid fluctuations) and it offers the new iOS 7 CLBeacon class within the CoreLocation framework.

Here are some interesting fun facts:

  • Apple does not produce iBeacon hardware
  • iBeacon is not the only BLE profile for beacons, there are others that predated it (S-beacon, Gimbal, GeLo)
  • Most beacons allow over the air (OTA) software updates which can be used to load the iBeacon profile
  • The beacons from different vendors often behave quite differently
  • iBeacons CANNOT reliably be used to pinpoint a precise indoor position - more on that later

The iBeacon BLE Profile does not have any payload. Instead it just sends three pieces of information:

  1. UUID - beacon manufacturer's unique identifier
  2. Major - a value that can identify a group of beacons (can be used for general region)
  3. Minor - a value that can identify an individual  beacon with a group (can be used for a specific location within that region)

The CLBeacon class offers three different properties for determining the distance from the beacon:

  1. Accuracy - the accuracy of the proximity value allegedly in meters - in practice this doesn't map directly to meters in most cases
  2. Proximity - the vague definition of proximity - immediate, near, far and unknown
  3. RSSI - the received signal strength of the beacon in decibels

The CLBeaconRegion class enables notifications when the iPhone detects that the range of an iBeacon has changed and this can be used to launch your App even if it was not running. The class also enables the construction of a Virtual Beacon whereby the iPhone itself uses the iBeacon BLE Profile to behave like an iBeacon.

This means that we can detect proximity to an iBeacon quite easily by using the Proximity property. In practice this means using the CLBeaconRegion class to set up notifications when we get a proximity of "immediate" to certain strategically positions iBeacons. The accuracy of the beacons can be increased by more power and changing the frequency of updates (the default varies per vendor). Increasing these two parameters obviously decreases the battery life. The simplest option is to look for cases where ‘the device is close to a beacon and the accuracy confidence is high' which translates into immediate zone. If you were however to put your hand in front of the device and the iBeacon, this can provide enough interference to push it back to the ‘near zone' although neither the device or beacon has actually moved.

Immediate Zone (0-20 cm) (0-8")
When a device is held up close to a beacon
Accuracy confidence is high

Near Zone (20 cm - 2 m) (8"- 6.5')
Within a couple of meters to the beacon
Accuracy is fairly certain

Far Zone (2 - 70 m) (6.5 - 230')
More than a few meters away
Accuracy is low or the signal strength is weak
[https://community.estimote.com/hc/en-us/articles/201029223-RSSI-Range-Zones-and-Distance-Accuracy]

A simple strategy is to have a Cloud hosted data set that determines the positions of the beacons for an App to dynamically load and refer to. If you try and hardcode the iBeacon positions or have a non-updateable configuration file then you would have to go through the Apple App Store review process every time you want to physically add a new iBeacon. You could also host other information such as broadcast messages, regions and what the major and minor versions actually represent. It would certainly be interesting to have Location Data Stores that can describe multiple indoor positioning systems and that you can look up based on UUID, major and minor. That could be perceived as a security risk in certain situations though.

There are definite differences between the beacon vendors, and things you should be looking into are as follows:

  • Secure firmware update over the air
  • Cloud management platform
  • iBeacon profile support
  • Configurable properties: radio output power; RSSI; iBeacon advertising interval; UUID, major; and minor
  • Developer SDK with documentation

If you buy beacons without the iBeacon profile pre-installed and they are not firmware updateable over the air then you are limited to older profiles. Likewise if the UUID is not configurable and not communicated in the documentation then you are locked into the vendor SDK. If the iBeacon advertising interval is very slow by default and not configurable then your beacons will be less accurate. Finally not being able to configure the power and RSSI means the beacons cannot be configured to be more accurate. http://localz.co/blog/ibeacon-ble-hardware-commercial-comparison/

There are also differences in the accuracy of iBeacons and associated SDKs as followed:

  • Drop-out rate
  • Consistency of beacon results amongst the same vendor
  • Correct implementation of measured power (he value of measured RSSI at a distance of one meter)
  • Change in accuracy due to rotation
  • Beacon interference with each other (not something that should have an effect)

http://blog.shinetech.com/2014/02/17/the-beacon-experiments-low-energy-bluetooth-devices-in-action/

The challenge comes when you want to try and use triangulation with the RSSI or accuracy properties in order to find out a precise location rather than ‘immediate', ‘near' or ‘far'. Using the accuracy property is best summed up by the following statement in the iOS 7 API documentation, "Accuracy indicates the one sigma horizontal accuracy in meters. Use this property to differentiate between beacons with the same proximity value. Do not use it to identify a precise location for the beacon. Accuracy values may fluctuate due to RF interference. A negative value in this property signifies that the actual accuracy could not be determined."

The distance estimate provided by iOS is based on the ratio of the iBeacon signal strength (RSSI) over the calibrated transmitter power (txPower). The txPower is the known measured signal strength in RSSI at 1 meter away. iOS also normalises the values to negate the fluctuations.

"At first glance it would appear that accuracy does seem to resemble distance. However at 0.5 meters, the accuracy underestimated distance, and by 1.5 meters, accuracy was an overestimation of distance. I decided to extend the distance out to 8 meters to see if the accuracy continued increasing with distance, however over the course of 80 seconds the accuracy of the beacon only reported an accuracy of 3.87m - some 4.13 meters shy of 8 meters. This was less than convincing that accuracy was representing distance. In certain ranges with this beacon there does appear to be some correlation between accuracy and distance. I turned the power up to 100% (+4bBm) and measured the accuracy at the same varying distances. This time I was seeing a very close relationship between accuracy and distance between 1 and 5 meters, though it did start to slip at greater distances (however at 15 meters there were desks and computers obscuring the path, so perhaps this is expected)." http://blog.shinetech.com/2014/02/17/the-beacon-experiments-low-energy-bluetooth-devices-in-action/

One equation that sums up the way to calculate distance is as follows:
P(d)[dBm] = P(do)[dBm] - 10n log (d / d0) - Z

  • d             The distance we want to know
  • d0           A measure of distance for a known power output
  • n             The way the signal power degrades over distance
  • Z              The environmental effect (which is quite large).

http://www.codepilots.com/2014/03/ibeacons-accuracy/

To provide the algorithm for Android or to create your own custom version for iOS then you would need to do something like the following:

1.     Normalise the RSSI and txPower values

2.     Calibrate each IBeacon with the txPower value to allow accurate distance estimates.

3.     Measured a bunch of RSSI measurements at known distances, then do a best fit curve to match the data points

4.     Convert the best fit curve into an algorithm

protected static double calculateAccuracy(int txPower, double rssi) {
if (rssi == 0) {
return -1.0; // if we cannot determine accuracy, return -1.
}

double ratio = rssi*1.0/txPower;
if (ratio < 1.0) {
return Math.pow(ratio,10);
}
else {
double accuracy =  (0.89976)*Math.pow(ratio,7.7095) + 0.111;
return accuracy;
}
}
http://stackoverflow.com/questions/20416218/understanding-ibeacon-distancing/20434019#20434019

There are mainly five issues with the approach of triangulation for more accurate positioning:

1.     In non-controlled environments, where you can find metals, and other objects that affect the signal, the received signal strength of the beacons changes so often that it seems impossible to get an error range below 5 meters.

2.     Other devices using 2.4 GHz frequency might be interfering with the Beacons' signal.

3.     Depending on the way that the user is handling the receiver device, the readings can change a lot as well. If the user puts his/her hand over the bluetooth antenna, then the algorithm will have low signals as input, and thus the beacons will supposed to be very far from the device.

4.     The directionality of the beacons and the receiver affects the readings.

5.     The beacons and their SDKs all have a different effect on the accuracy of the results

http://stackoverflow.com/questions/20332856/triangulate-example-for-ibeacons

"Having completed these experiments, I've been able to conclude that achieving accurate distance measurements with a single beacon is potentially possible, provided you have the right beacon and the right brand. Out of eight beacons, I only found one that was consistently achieving accurate distances. Given that there is so much inconsistency between the beacons and there is no guarantee you will even receive a beacon in an order that does provide accurate results, it seems the only way to achieve accuracy is by using many beacons and averaging the results."
http://blog.shinetech.com/2014/02/17/the-beacon-experiments-low-energy-bluetooth-devices-in-action/

Recommendations

1.     Ceiling mounting of beacons reduces variance and the user blocking the path

2.     Signal transmission and reception are dependent on the orientation of both the transmitter and receiver

3.     Radio absorption by the user is significant in determining distance

4.     Other radio interference does not seem significant

5.     Clustering of beacons does not seem to have an impact

6.     The measured power does not decrease uniformly as we move away from the receiver, this is the biggest limiting factor in using this technology for accurate positioning

7.     Increasing the power to the beacons using the vendor SDK increases the relationship between accuracy and distance (on correctly configured beacons)

8.     One mooted solution is to try to set up a beacon every X meters (X being the maximum error tolerated in the system) so we can track on this beacons grid the position of a given device by calculating which beacon on the grid is the closest to the device and assuming that the device is on the same position

9.     Choose the beacon vendor carefully based on online reports because functionality does vary a lot

10. Use lots of beacons and take an average due to drop out rates and inconsistency amongst beacons in the same place

I leave you some other reading material and the general advice that using relative proximity is probably a far lot simpler than trying to implement precise location. That means designing your solution architecture and physical deployment appropriately. I can see the ability to track a user through a shopping centre of airport, but the ability to pinpoint out a product in a retail store will be challenging unless beacons with very high power levels are used and ceiling mounted.

Additional Resources:

************************************************************************

Kevin Benedict

Writer, Speaker, Editor

Senior Analyst, Digital Transformation, EBA, Center for the Future of Work Cognizant

View my profile on LinkedIn

Learn about mobile strategies at MobileEnterpriseStrategies.com

Follow me on Twitter @krbenedict

Browse the Mobile Solution Directory

Join the Linkedin Group Strategic Enterprise Mobility

Join the Google+ Community Mobile Enterprise Strategies

Recommended Strategy Book Code Halos

Recommended iPad App Code Halos for iPads

 

***Full Disclosure: These are my personal opinions. No company is silly enough to claim them. I am a mobility and digital transformation analyst, consultant and writer. I work with and have worked with many of the companies mentioned in my articles.

More Stories By Kevin Benedict

Kevin Benedict is the Senior Analyst for Digital Transformation at Cognizant, a writer, speaker and SAP Mentor Alumnus. Follow him on Twitter @krbenedict. He is a popular speaker around the world on the topic of digital transformation and enterprise mobility. He maintains a busy schedule researching, writing and speaking at events in North America, Asia and Europe. He has over 25 years of experience working in the enterprise IT solutions industry.

@ThingsExpo Stories
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.
With the iCloud scandal seemingly in its past, Apple announced new iPhones, updates to iPad and MacBook as well as news on OSX Yosemite. Although consumers will have to wait to get their hands on some of that new stuff, what they can get is the latest release of iOS 8 that Apple made available for most in-market iPhones and iPads. Originally announced at WWDC (Apple’s annual developers conference) in June, iOS 8 seems to spearhead Apple’s newfound focus upon greater integration of their products into everyday tasks, cross-platform mobility and self-monitoring. Before you update your device, here is a look at some of the new features and things you may want to consider from a mobile security perspective.