Click here to close now.


@ThingsExpo Authors: Liz McMillan, Yeshim Deniz, Carmen Gonzalez, AppDynamics Blog, Elizabeth White

News Feed Item

Panasonic Develops Industry-First*1 Multi-Mode Wireless Communication Technology for Sensor Networks

Panasonic Corporation today announced that it has developed a new wireless communication technology for M2M (Machine-to-Machine) sensor networks[1], where devices communicate with each other in an autonomous way without human intervention.

Prototype Module employing Developed Wireless Technologies (Photo: Business Wire)

Prototype Module employing Developed Wireless Technologies (Photo: Business Wire)

This technology is based on a single chip of LSI that can simultaneously detect multiple wireless communication standards, which differ from one country to another or in the target applications. Multiple communication modes are integrated by sharing the software of same functions and reducing the amount of signal processing in microcomputer. As a result, engineers can design and develop wireless modules that are small but can operate for an extended period of time. The newly-developed technology makes it easier to connect disparate devices and helps accelerate the spread of wireless sensor networks[2], contributing to achieving a society with a safe, secure, convenient and comfortable living environment.

Currently, different modes of wireless communication are used in different countries and regions for connecting devices to sensor networks. The new multi-mode wireless communication technology integrates multiple receiver circuits required for each individual wireless mode into a single one, enabling devices to be connected easily and stably each other regardless of operation frequencies and wireless standards. With a smaller area, the same as the receiving part of conventional single-mode wireless chip, multi-mode wireless LSI can support up to three different wireless modes at a time. The new LSI helps create a small and power-saving wireless module that will continue to operate for around 20 years on the battery.*2

The new technology has the following features.
  1.   Ability to be used in various devices and/or machines, independent of wireless standards and operation frequencies.
2. Reduction in the receiver power consumption of the whole module by 55% (compared with Panasonic’s existing products) that enables 20-year battery operation*2.
3. A small multi-mode wireless LSI having the same size as a conventional single-mode one, enabling downsizing of wireless modules.
This multi-mode wireless communication technology includes the following technologies.
  1.   Multi-mode technology that reduces both power consumption and memory capacity requirement based on frequency detection by hardware and unified control by common software for multiple wireless operation modes.
2. Receiver power reducing technology that enables 20-year battery operation while supporting multiple wireless modes, which is achieved by intelligently controlling voltage supplies and generating high rate internal clocks from low rate clocks to minimize circuit current.
3. Wireless LSI miniaturizing technology which reduces the size of coils in oscillator circuits and eliminates filters used in analog-to-digital converters.

Panasonic holds 26 Japanese patents and 19 overseas patents (including pending) related to this technology.

Development of this technology was supported in part by the "Research and Development for Expansion of Radio Spectrum Resources" program of The Ministry of Internal Affairs and Communications, Japan. A field test starts today at The ICT Incubation Laboratory in Research Center for Advanced Science and Technology, the University of Tokyo.



*1:   As of March 28, 2014, according to Panasonic data.
*2: When used in a smart meter or HEMS child device and receives and transmits information every 30 seconds using a 1200mAh industrial-use lithium-ion battery.

More on the Technology

1. Multi-mode technology that reduces both power consumption and memory capacity requirement based on frequency detection by hardware and unified control by common software for multiple wireless operation modes.

In wireless sensor networks, FSK[3] modulation is normally used. Conventional FSK demodulators, such as Arctan demodulators[4], detect the operation frequency by monitoring received signals in time domain and then demodulate based on the detected frequency. In order to receive multi-mode signals of different frequencies or based on different standards, a receiver needs to eliminate noise in accordance with bandwidth of each mode, thus a dedicated wireless LSI is required for each wireless mode.

Panasonic developed technologies to detect all frequency components simultaneously within multiple modes by employing Short-time DFT[5], which can also determine the data rate with respect to each mode by hardware and then demodulate by achieving an optimum control to the data rate. In addition, instead of switching among multiple software control modules each corresponding to one transfer rate, a unified software module for all modes is newly implemented. These technologies enable a single LSI to support multiple wireless modes.

2. Receiver power reducing technology that enables 20-year battery operation while supporting multiple wireless modes, which is achieved by intelligently controlling voltage supplies to minimize circuit current, and by generating high rate internal clocks from low rate clocks.

In conventional wireless receivers, a constant voltage is used for every circuit to guarantee a whole stable operation regardless of operation frequencies or temperatures. However, to maintain such a constant voltage a strong enough supply voltage has to be supplied all the time. This causes waste when a lower power supply is sufficient.

Panasonic developed an intelligent power supply technology which controls a voltage dynamically for a circuit according to its frequency, temperature and process variations. The dynamic control minimizes current consumption of a circuit. As an example, for the high frequency oscillator circuit which consumes the most of current, it reduces by 70% compared to our previous design.

Also a high SNR[6] is required for an analog-to-digital converter (ADC)[7] to process received signals. Conventionally this is realized by a high rate sampling circuit which picks out pulses from a 100MHz clock. But such a circuit consumes much power.

Panasonic developed a technology to generate high rate sampling pulses from a low rate clock by using its rising edge effectively. Furthermore, Panasonic developed a SAR-ADC[8] which can realize a high SNR equivalent to that generated by a conventional ΔΣ ADC[9], but with lower power consumption. Compared to our previous design it has been reduced by 60%.

3. Wireless LSI miniaturizing technology which reduces the size of coils in oscillator circuits and eliminates filters used in analog-to-digital converters.

Conventional oscillator circuits require large coils to minimize the increase of circuit current due to transistor performance variations. The newly developed intelligent power supply control technology compensates for the transistor variations and enables use of twice the oscillation frequency. This makes a small-sized oscillator circuit to be realized, which has a smaller coil and a divide-by-two circuit both with low current consumption. In addition, instead of conventional analog-to-digital converters of the ΔΣ ADC that have been necessary to achieve required performance, a SAR-ADC is adopted in the new technology which makes a compact filter-less analog-to-digital converter possible.


Technical Terms:

[1] M2M (Machine to Machine) sensor network
    A network where devices in it communicate with each other without human intervention. The devices may send information, make control and provide services to each other automatically.
[2] Wireless sensor network
A wireless system where various sensor data are transmitted through wireless communications. The sensor data may include temperature, humidity, brightness and power consumption at home.
[3] FSK
Frequency Shift Keying. The most common protocol of digital modulation.
[4] Arctan demodulation
One scheme of FSK demodulation, which detects a phase shift by calculating the arctangent of a signal. “Arctan” is abbreviated expression of arctangent.
[5] Short-time DFT
Short-time Discrete Fourier Transform, which can be used for a simple FSK demodulation.
[6] SNR
Signal to Noise Ratio, which represents the ratio of a signal power to a noise power.
[7] ADC
Analog to Digital Converter, a circuit that converts analog signals to digital signals.
Successive Approximation Register – Analog to Digital Converter, an ADC which converts an incoming signal one bit by one bit through using a binary search algorithm.
[9] ΔΣ ADC
Delta-Sigma Analog to Digital Converter, which integrates the difference between consecutive data and detects its error precisely to realize precise ADC.

About Panasonic

Panasonic Corporation is a worldwide leader in the development and engineering of electronic technologies and solutions for customers in residential, non-residential, mobility and personal applications. Since its founding in 1918, the company has expanded globally and now operates over 500 consolidated companies worldwide, recording consolidated net sales of 7.30 trillion yen for the year ended March 31, 2013. Committed to pursuing new value through innovation across divisional lines, the company strives to create a better life and a better world for its customers. For more information about Panasonic, please visit the company's website at

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
The broad selection of hardware, the rapid evolution of operating systems and the time-to-market for mobile apps has been so rapid that new challenges for developers and engineers arise every day. Security, testing, hosting, and other metrics have to be considered through the process. In his session at Big Data Expo, Walter Maguire, Chief Field Technologist, HP Big Data Group, at Hewlett-Packard, will discuss the challenges faced by developers and a composite Big Data applications builder, focusing on how to help solve the problems that developers are continuously battling.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
WebRTC services have already permeated corporate communications in the form of videoconferencing solutions. However, WebRTC has the potential of going beyond and catalyzing a new class of services providing more than calls with capabilities such as mass-scale real-time media broadcasting, enriched and augmented video, person-to-machine and machine-to-machine communications. In his session at @ThingsExpo, Luis Lopez, CEO of Kurento, will introduce the technologies required for implementing these ideas and some early experiments performed in the Kurento open source software community in areas ...
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of, and Fred Yatzeck, principal architect leading product development at, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”