Welcome!

@ThingsExpo Authors: Yeshim Deniz, Elizabeth White, Pat Romanski, Liz McMillan, Zakia Bouachraoui

News Feed Item

Panasonic Develops Industry-First*1 Multi-Mode Wireless Communication Technology for Sensor Networks

Panasonic Corporation today announced that it has developed a new wireless communication technology for M2M (Machine-to-Machine) sensor networks[1], where devices communicate with each other in an autonomous way without human intervention.

Prototype Module employing Developed Wireless Technologies (Photo: Business Wire)

Prototype Module employing Developed Wireless Technologies (Photo: Business Wire)

This technology is based on a single chip of LSI that can simultaneously detect multiple wireless communication standards, which differ from one country to another or in the target applications. Multiple communication modes are integrated by sharing the software of same functions and reducing the amount of signal processing in microcomputer. As a result, engineers can design and develop wireless modules that are small but can operate for an extended period of time. The newly-developed technology makes it easier to connect disparate devices and helps accelerate the spread of wireless sensor networks[2], contributing to achieving a society with a safe, secure, convenient and comfortable living environment.

Currently, different modes of wireless communication are used in different countries and regions for connecting devices to sensor networks. The new multi-mode wireless communication technology integrates multiple receiver circuits required for each individual wireless mode into a single one, enabling devices to be connected easily and stably each other regardless of operation frequencies and wireless standards. With a smaller area, the same as the receiving part of conventional single-mode wireless chip, multi-mode wireless LSI can support up to three different wireless modes at a time. The new LSI helps create a small and power-saving wireless module that will continue to operate for around 20 years on the battery.*2

 
The new technology has the following features.
  1.   Ability to be used in various devices and/or machines, independent of wireless standards and operation frequencies.
2. Reduction in the receiver power consumption of the whole module by 55% (compared with Panasonic’s existing products) that enables 20-year battery operation*2.
3. A small multi-mode wireless LSI having the same size as a conventional single-mode one, enabling downsizing of wireless modules.
 
This multi-mode wireless communication technology includes the following technologies.
  1.   Multi-mode technology that reduces both power consumption and memory capacity requirement based on frequency detection by hardware and unified control by common software for multiple wireless operation modes.
2. Receiver power reducing technology that enables 20-year battery operation while supporting multiple wireless modes, which is achieved by intelligently controlling voltage supplies and generating high rate internal clocks from low rate clocks to minimize circuit current.
3. Wireless LSI miniaturizing technology which reduces the size of coils in oscillator circuits and eliminates filters used in analog-to-digital converters.

Panasonic holds 26 Japanese patents and 19 overseas patents (including pending) related to this technology.

Development of this technology was supported in part by the "Research and Development for Expansion of Radio Spectrum Resources" program of The Ministry of Internal Affairs and Communications, Japan. A field test starts today at The ICT Incubation Laboratory in Research Center for Advanced Science and Technology, the University of Tokyo.

 

Notes:

*1:   As of March 28, 2014, according to Panasonic data.
*2: When used in a smart meter or HEMS child device and receives and transmits information every 30 seconds using a 1200mAh industrial-use lithium-ion battery.
 

More on the Technology

1. Multi-mode technology that reduces both power consumption and memory capacity requirement based on frequency detection by hardware and unified control by common software for multiple wireless operation modes.

In wireless sensor networks, FSK[3] modulation is normally used. Conventional FSK demodulators, such as Arctan demodulators[4], detect the operation frequency by monitoring received signals in time domain and then demodulate based on the detected frequency. In order to receive multi-mode signals of different frequencies or based on different standards, a receiver needs to eliminate noise in accordance with bandwidth of each mode, thus a dedicated wireless LSI is required for each wireless mode.

Panasonic developed technologies to detect all frequency components simultaneously within multiple modes by employing Short-time DFT[5], which can also determine the data rate with respect to each mode by hardware and then demodulate by achieving an optimum control to the data rate. In addition, instead of switching among multiple software control modules each corresponding to one transfer rate, a unified software module for all modes is newly implemented. These technologies enable a single LSI to support multiple wireless modes.

2. Receiver power reducing technology that enables 20-year battery operation while supporting multiple wireless modes, which is achieved by intelligently controlling voltage supplies to minimize circuit current, and by generating high rate internal clocks from low rate clocks.

In conventional wireless receivers, a constant voltage is used for every circuit to guarantee a whole stable operation regardless of operation frequencies or temperatures. However, to maintain such a constant voltage a strong enough supply voltage has to be supplied all the time. This causes waste when a lower power supply is sufficient.

Panasonic developed an intelligent power supply technology which controls a voltage dynamically for a circuit according to its frequency, temperature and process variations. The dynamic control minimizes current consumption of a circuit. As an example, for the high frequency oscillator circuit which consumes the most of current, it reduces by 70% compared to our previous design.

Also a high SNR[6] is required for an analog-to-digital converter (ADC)[7] to process received signals. Conventionally this is realized by a high rate sampling circuit which picks out pulses from a 100MHz clock. But such a circuit consumes much power.

Panasonic developed a technology to generate high rate sampling pulses from a low rate clock by using its rising edge effectively. Furthermore, Panasonic developed a SAR-ADC[8] which can realize a high SNR equivalent to that generated by a conventional ΔΣ ADC[9], but with lower power consumption. Compared to our previous design it has been reduced by 60%.

3. Wireless LSI miniaturizing technology which reduces the size of coils in oscillator circuits and eliminates filters used in analog-to-digital converters.

Conventional oscillator circuits require large coils to minimize the increase of circuit current due to transistor performance variations. The newly developed intelligent power supply control technology compensates for the transistor variations and enables use of twice the oscillation frequency. This makes a small-sized oscillator circuit to be realized, which has a smaller coil and a divide-by-two circuit both with low current consumption. In addition, instead of conventional analog-to-digital converters of the ΔΣ ADC that have been necessary to achieve required performance, a SAR-ADC is adopted in the new technology which makes a compact filter-less analog-to-digital converter possible.

   

Technical Terms:

[1] M2M (Machine to Machine) sensor network
    A network where devices in it communicate with each other without human intervention. The devices may send information, make control and provide services to each other automatically.
[2] Wireless sensor network
A wireless system where various sensor data are transmitted through wireless communications. The sensor data may include temperature, humidity, brightness and power consumption at home.
[3] FSK
Frequency Shift Keying. The most common protocol of digital modulation.
[4] Arctan demodulation
One scheme of FSK demodulation, which detects a phase shift by calculating the arctangent of a signal. “Arctan” is abbreviated expression of arctangent.
[5] Short-time DFT
Short-time Discrete Fourier Transform, which can be used for a simple FSK demodulation.
[6] SNR
Signal to Noise Ratio, which represents the ratio of a signal power to a noise power.
[7] ADC
Analog to Digital Converter, a circuit that converts analog signals to digital signals.
[8] SAR-ADC
Successive Approximation Register – Analog to Digital Converter, an ADC which converts an incoming signal one bit by one bit through using a binary search algorithm.
[9] ΔΣ ADC
Delta-Sigma Analog to Digital Converter, which integrates the difference between consecutive data and detects its error precisely to realize precise ADC.
 

About Panasonic

Panasonic Corporation is a worldwide leader in the development and engineering of electronic technologies and solutions for customers in residential, non-residential, mobility and personal applications. Since its founding in 1918, the company has expanded globally and now operates over 500 consolidated companies worldwide, recording consolidated net sales of 7.30 trillion yen for the year ended March 31, 2013. Committed to pursuing new value through innovation across divisional lines, the company strives to create a better life and a better world for its customers. For more information about Panasonic, please visit the company's website at http://panasonic.net/.

More Stories By Business Wire

Copyright © 2009 Business Wire. All rights reserved. Republication or redistribution of Business Wire content is expressly prohibited without the prior written consent of Business Wire. Business Wire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

IoT & Smart Cities Stories
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great deals to great conferences, helping you discover new conferences and increase your return on investment.
DXWorldEXPO LLC announced today that ICOHOLDER named "Media Sponsor" of Miami Blockchain Event by FinTechEXPO. ICOHOLDER gives detailed information and help the community to invest in the trusty projects. Miami Blockchain Event by FinTechEXPO has opened its Call for Papers. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Miami Blockchain Event by FinTechEXPOalso offers sp...
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
@DevOpsSummit at Cloud Expo, taking place November 12-13 in New York City, NY, is co-located with 22nd international CloudEXPO | first international DXWorldEXPO and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time t...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...
SYS-CON Events announced today that IoT Global Network has been named “Media Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. The IoT Global Network is a platform where you can connect with industry experts and network across the IoT community to build the successful IoT business of the future.
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...